deep learning/machine learning
Dotaz
Zobrazit nápovědu
Digitalizace laboratoří, aplikace big dat a automatizovaná strojová diagnostika ("machine learning") jsou nástroji pro vznik a fungování toho, co se označuje jako precizní medicína. Genomika, její dominantní metody (qPCR, dPCR, ddPCR, NGS), produkující obrovská kvanta dat (big data) a schopnosti počítačových systémů tyto soubory dat využívat v diagnostice a terapii za významného přispění "umělé inteligence" se označují jako strojová automatizovaná diagnostika - machine learning respektive deep learning). Tyto postupy pronikají z průmyslu a výzkumu do rutinní medicíny včetně medicíny laboratorní. Zvládnutí technických a personálních problémů těchto změn bude stát značné úsilí, srovnatelné s před lety realizovanou přeměnou manuální laboratorní práce na automatizovanou činnost a s přeměnou papírové dokumentace výsledků na laboratorní a nemocniční informační systémy. Lze předpokládat nejen zásadní změny metod laboratorní práce, ale i změny požadavků na odbornost personálu laboratoří a rovněž lze předpokládat nevyhnutelnost radikálního ovlivnění činnosti klinických laboratoří. Etický rozměr nastávajících změn bude stejně závažný, jako ten technický a bude možné očekávat nejen významný progres v diagnostice e prognostice chorob, ale i vzestup rizika zdravotní péče v případě chyb a neprofesionality. Automatická strojová aplikace big dat a používání umělé inteligence jsou náročné, je s nimi v medicíně málo zkušeností, ale vyhnout se jim nebude možné.
Digitalization of clinical laboratories, application of big data and methods of machine learning re contemporary tools for precision medicine. Precision medicine is based mainly on the genomic methods, namely of dominant PCR and NGS methods. These methods produces enormous number of dates (big data) and can be explored by means of artificial intelligence in processes called machine learning. Machine learning was primarily used in industry and research and now contemporary penetrates into medicine and also to laboratory medicine. Methods based on the big data and artificial intelligence with exploration of big data is certainly very important factor of future of medicine. It will be needs large requirements not only on high-technology equipment, but also for new type of young laboratory Professional used basically new methods of work and mind. Machine learning, part of precision medicine, necessary namely for oncology and prediction of patients state crettemeans also lot of new types of ethical problems. These ethical questions and problems should be soluted immediately, parallel with introduction of machine learning to laboratory practice.
Breast cancer survival prediction can have an extreme effect on selection of best treatment protocols. Many approaches such as statistical or machine learning models have been employed to predict the survival prospects of patients, but newer algorithms such as deep learning can be tested with the aim of improving the models and prediction accuracy. In this study, we used machine learning and deep learning approaches to predict breast cancer survival in 4,902 patient records from the University of Malaya Medical Centre Breast Cancer Registry. The results indicated that the multilayer perceptron (MLP), random forest (RF) and decision tree (DT) classifiers could predict survivorship, respectively, with 88.2 %, 83.3 % and 82.5 % accuracy in the tested samples. Support vector machine (SVM) came out to be lower with 80.5 %. In this study, tumour size turned out to be the most important feature for breast cancer survivability prediction. Both deep learning and machine learning methods produce desirable prediction accuracy, but other factors such as parameter configurations and data transformations affect the accuracy of the predictive model.
- MeSH
- analýza přežití MeSH
- deep learning * MeSH
- demografie MeSH
- dospělí MeSH
- kalibrace MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nádory prsu mortalita MeSH
- neuronové sítě MeSH
- rozhodovací stromy MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- support vector machine MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Tým pracovníků Vysokého učení technického v Brně a Masarykovy univerzity vyvíjí webovou aplikaci, jejímž cílem je poskytovat terapeutům zpětnou vazbu na základě automatického zpracování pravidelně získávaných dotazníkových dat a audionahrávek z terapeutických sezení (z projektové zprávy).
An expert team from Brno University of Technology and Masaryk University is developing a web application to provide therapists with feedback based on automatic processing of regularly collected questionnaire data and audio recordings from therapy sessions (from project report).
BACKGROUND: An early diagnosis together with an accurate disease progression monitoring of multiple sclerosis is an important component of successful disease management. Prior studies have established that multiple sclerosis is correlated with speech discrepancies. Early research using objective acoustic measurements has discovered measurable dysarthria. METHOD: The objective was to determine the potential clinical utility of machine learning and deep learning/AI approaches for the aiding of diagnosis, biomarker extraction and progression monitoring of multiple sclerosis using speech recordings. A corpus of 65 MS-positive and 66 healthy individuals reading the same text aloud was used for targeted acoustic feature extraction utilizing automatic phoneme segmentation. A series of binary classification models was trained, tuned, and evaluated regarding their Accuracy and area-under-the-curve. RESULTS: The Random Forest model performed best, achieving an Accuracy of 0.82 on the validation dataset and an area-under-the-curve of 0.76 across 5 k-fold cycles on the training dataset. 5 out of 7 acoustic features were statistically significant. CONCLUSION: Machine learning and artificial intelligence in automatic analyses of voice recordings for aiding multiple sclerosis diagnosis and progression tracking seems promising. Further clinical validation of these methods and their mapping onto multiple sclerosis progression is needed, as well as a validating utility for English-speaking populations.
- MeSH
- lidé MeSH
- pilotní projekty MeSH
- řeč * MeSH
- roztroušená skleróza * MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Advancements in artificial intelligence (AI) and machine learning (ML) have revolutionized the medical field and transformed translational medicine. These technologies enable more accurate disease trajectory models while enhancing patient-centered care. However, challenges such as heterogeneous datasets, class imbalance, and scalability remain barriers to achieving optimal predictive performance. METHODS: This study proposes a novel AI-based framework that integrates Gradient Boosting Machines (GBM) and Deep Neural Networks (DNN) to address these challenges. The framework was evaluated using two distinct datasets: MIMIC-IV, a critical care database containing clinical data of critically ill patients, and the UK Biobank, which comprises genetic, clinical, and lifestyle data from 500,000 participants. Key performance metrics, including Accuracy, Precision, Recall, F1-Score, and AUROC, were used to assess the framework against traditional and advanced ML models. RESULTS: The proposed framework demonstrated superior performance compared to classical models such as Logistic Regression, Random Forest, Support Vector Machines (SVM), and Neural Networks. For example, on the UK Biobank dataset, the model achieved an AUROC of 0.96, significantly outperforming Neural Networks (0.92). The framework was also efficient, requiring only 32.4 s for training on MIMIC-IV, with low prediction latency, making it suitable for real-time applications. CONCLUSIONS: The proposed AI-based framework effectively addresses critical challenges in translational medicine, offering superior predictive accuracy and efficiency. Its robust performance across diverse datasets highlights its potential for integration into real-time clinical decision support systems, facilitating personalized medicine and improving patient outcomes. Future research will focus on enhancing scalability and interpretability for broader clinical applications.
Natural products represent a rich reservoir of small molecule drug candidates utilized as antimicrobial drugs, anticancer therapies, and immunomodulatory agents. These molecules are microbial secondary metabolites synthesized by co-localized genes termed Biosynthetic Gene Clusters (BGCs). The increase in full microbial genomes and similar resources has led to development of BGC prediction algorithms, although their precision and ability to identify novel BGC classes could be improved. Here we present a deep learning strategy (DeepBGC) that offers reduced false positive rates in BGC identification and an improved ability to extrapolate and identify novel BGC classes compared to existing machine-learning tools. We supplemented this with random forest classifiers that accurately predicted BGC product classes and potential chemical activity. Application of DeepBGC to bacterial genomes uncovered previously undetectable putative BGCs that may code for natural products with novel biologic activities. The improved accuracy and classification ability of DeepBGC represents a major addition to in-silico BGC identification.
Lung cancer is the leading cause of cancer death in men and women. The prognostic value of survival after lung cancer surgery has an important role in decision-making for surgeons and patients. The combination of clinical features and CT scan information for diagnosis, treatment and survival of patients with lung cancer increases the accuracy of prediction using machine learning. Therefore, creating a computer intelligent method with low error and high accuracy to predict survival is an important challenge, and it is beneficial for decreasing mortality from lung cancer, and for planning treatment. In this work, we implemented a deep stacked sparse auto-encoder (DSSAE) approach on a thoracic surgery data set for 470 patients, and our results contributing to deep learning based on 16 features were more precise than other suggested techniques for predicting post-operative survival expectancy in thoracic lung cancer surgery. The proposed method achieved a sensitivity of 94%, specificity of 82.86% and g-mean of 88.25%.
- MeSH
- analýza přežití MeSH
- deep learning MeSH
- hrudní chirurgické výkony metody MeSH
- lidé MeSH
- nádory plic * diagnostické zobrazování chirurgie patologie MeSH
- pooperační komplikace mortalita prevence a kontrola MeSH
- předoperační vyšetření MeSH
- prognóza MeSH
- řízené strojové učení MeSH
- rozpoznávání automatizované MeSH
- Check Tag
- lidé MeSH
In recent years, expanding uses of artificial intelligence (AI) and machine learning have revolutionized pharmaceutical research and development, allowing us to harness multi-dimensional biological and clinical data from experimental to real-world settings (ML). Precision medicine discovery and development, from target validation to medication optimization, is driven by patient-centered iterative forward and reverse translation. As evidenced by deep characterizations of the genome, transcriptome, proteome, metabolome, microbiome, and exposome, the integration of advanced analytics into the practise of Translational Medicine is now a critical enabler for fully exploiting information contained in diverse sources of big data sets such as “omics” data. In this article, we provide an overview of machine learning (ML) applications in drug discovery and development, aligned with the three strategic pillars of Translational Medicine (target, patient, and dose), and discuss how they can alter the science and practise of the discipline. Model-informed drug discovery and development will be revolutionised if ML approaches are integrated into the science of pharmacometrics. Finally, we believe that cross-functional team activities involving clinical pharmacology, bioinformatics, and biomarker technology experts are critical to realising the promise of AI/ML-enabled Translational and Precision Medicine.
Radiologists utilize pictures from X-rays, magnetic resonance imaging, or computed tomography scans to diagnose bone cancer. Manual methods are labor-intensive and may need specialized knowledge. As a result, creating an automated process for distinguishing between malignant and healthy bone is essential. Bones that have cancer have a different texture than bones in unaffected areas. Diagnosing hematological illnesses relies on correct labeling and categorizing nucleated cells in the bone marrow. However, timely diagnosis and treatment are hampered by pathologists' need to identify specimens, which can be sensitive and time-consuming manually. Humanity's ability to evaluate and identify these more complicated illnesses has significantly been bolstered by the development of artificial intelligence, particularly machine, and deep learning. Conversely, much research and development is needed to enhance cancer cell identification-and lower false alarm rates. We built a deep learning model for morphological analysis to solve this problem. This paper introduces a novel deep convolutional neural network architecture in which hybrid multi-objective and category-based optimization algorithms are used to optimize the hyperparameters adaptively. Using the processed cell pictures as input, the proposed model is then trained with an optimized attention-based multi-scale convolutional neural network to identify the kind of cancer cells in the bone marrow. Extensive experiments are run on publicly available datasets, with the results being measured and evaluated using a wide range of performance indicators. In contrast to deep learning models that have already been trained, the total accuracy of 99.7% was determined to be superior.
To identify patterns in big medical datasets and use Deep Learning and Machine Learning (ML) to reliably diagnose Cardio Vascular Disease (CVD), researchers are currently delving deeply into these fields. Training on large datasets and producing highly accurate validation results is exceedingly difficult. Furthermore, early and precise diagnosis is necessary due to the increased global prevalence of cardiovascular disease (CVD). However, the increasing complexity of healthcare datasets makes it challenging to detect feature connections and produce precise predictions. To address these issues, the Intelligent Cardiovascular Disease Diagnosis based on Ant Colony Optimisation with Enhanced Deep Learning (ICVD-ACOEDL) model was developed. This model employs feature selection (FS) and hyperparameter optimization to diagnose CVD. Applying a min-max scaler, medical data is first consistently prepared. The key feature that sets ICVD-ACOEDL apart is the use of Ant Colony Optimisation (ACO) to select an optimal feature subset, which in turn helps to upgrade the performance of the ensuring deep learning enhanced neural network (DLENN) classifier. The model reforms the hyperparameters of DLENN for CVD classification using Bayesian optimization. Comprehensive evaluations on benchmark medical datasets show that ICVD-ACOEDL exceeds existing techniques, indicating that it could have a significant impact on CVD diagnosis. The model furnishes a workable way to increase CVD classification efficiency and accuracy in real-world medical situations by incorporating ACO for feature selection, min-max scaling for data pre-processing, and Bayesian optimization for hyperparameter tweaking.
- MeSH
- Bayesova věta MeSH
- deep learning * MeSH
- diagnóza počítačová metody MeSH
- Formicidae MeSH
- kardiovaskulární nemoci * diagnóza MeSH
- lidé MeSH
- neuronové sítě * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH