leverage
Dotaz
Zobrazit nápovědu
Background: Australia is currently in the process of deploying a national personally controlled electronic health record (PCEHR). This is being built using a combination of international standards and profiles as well as Australian Standards and with specifications developed by the National eHealth Transition Authority (NeHTA). Objective: There exists a poor appreciation of how the complex construction of the overall system is supported and protected by multiple international standards. These fundamental underpinnings have been sourced from international standards groups such as Health Level Seven (HL7) and Integrating the Health Enterprise (IHE) as well as developed locally. In addition, other services underlie this infrastructure such as secure messaging, the national Health Identification Service and the National Authentication Service for Health (NASH). Methods: An analysis of the national e-health system demonstrates how this model of standards and service integration results in a complex service oriented architecture. Results: The expected benefits from the integrated yet highly dependent nature of the national ehealth system are improved patient outcomes and significant cost savings. These are grounded and balanced by the current and future challenges that include incorporating the PCEHR into clincial workfiows and ensuring relevant, timely, detailed clinical data as well as consistent security policy issues and unquantified security threats. Conclusions: Ultimately, Australia has designed an ambitious yet diverse and integrated architecture. What remains to be seen is if the challenges that the medical software industry and clinical community face in leveraging the political process in order to encourage provider and public participation in ehealth, can be achieved despite the sound underpinnings of international standards.
- MeSH
- informační systémy MeSH
- lékařská informatika * MeSH
- lidé MeSH
- referenční standardy * MeSH
- řízení zdravotnictví MeSH
- záznamy jako téma MeSH
- Check Tag
- lidé MeSH
- Geografické názvy
- Austrálie MeSH
Genome-wide association studies (GWASs) have been successful at finding associations between genetic variants and human traits, including the immune-mediated diseases (IMDs). However, the requirement of large sample sizes for discovery poses a challenge for learning about less common diseases, where increasing volunteer numbers might not be feasible. An example of this is myositis (or idiopathic inflammatory myopathies [IIM]s), a group of rare, heterogeneous autoimmune diseases affecting skeletal muscle and other organs, severely impairing life quality. Here, we applied a feature engineering method to borrow information from larger IMD GWASs to find new genetic associations with IIM and its subgroups. Combining this approach with two clustering methods, we found 17 IMDs genetically close to IIM, including some common comorbid conditions, such as systemic sclerosis and Sjögren's syndrome, as well as hypo- and hyperthyroidism. All IIM subtypes were genetically similar within this framework. Next, we colocalized IIM signals that overlapped IMD signals, and found seven potentially novel myositis associations mapped to immune-related genes, including BLK, IRF5/TNPO3, and ITK/HAVCR2, implicating a role for both B and T cells in IIM. This work proposes a new paradigm of genetic discovery in rarer diseases by leveraging information from more common IMD, and can be expanded to other conditions and traits beyond IMD.
- MeSH
- autoimunitní nemoci genetika imunologie MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- myozitida * genetika imunologie MeSH
- nemoci imunitního systému genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Recent advancements in deep learning and generative models have significantly expanded the applications of virtual screening for drug-like compounds. Here, we introduce a multitarget transformer model, PCMol, that leverages the latent protein embeddings derived from AlphaFold2 as a means of conditioning a de novo generative model on different targets. Incorporating rich protein representations allows the model to capture their structural relationships, enabling the chemical space interpolation of active compounds and target-side generalization to new proteins based on embedding similarities. In this work, we benchmark against other existing target-conditioned transformer models to illustrate the validity of using AlphaFold protein representations over raw amino acid sequences. We show that low-dimensional projections of these protein embeddings cluster appropriately based on target families and that model performance declines when these representations are intentionally corrupted. We also show that the PCMol model generates diverse, potentially active molecules for a wide array of proteins, including those with sparse ligand bioactivity data. The generated compounds display higher similarity known active ligands of held-out targets and have comparable molecular docking scores while maintaining novelty. Additionally, we demonstrate the important role of data augmentation in bolstering the performance of generative models in low-data regimes. Software package and AlphaFold protein embeddings are freely available at https://github.com/CDDLeiden/PCMol.
- MeSH
- informace pro uživatele zdravotní péče * MeSH
- internet * MeSH
- lidé MeSH
- posudkové řízení MeSH
- studenti lékařství * MeSH
- zlepšení kvality * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
Precise localization of the epileptogenic zone is pivotal for planning minimally invasive surgeries in drug-resistant epilepsy. Here, we present a graph neural network (GNN) framework that integrates interictal intracranial EEG features, electrode topology, and MRI features to automate epilepsy surgery planning. We retrospectively evaluated the model using leave-one-patient-out cross-validation on a dataset of 80 drug-resistant epilepsy patients treated at St. Anne's University Hospital (Brno, Czech Republic), comprising 31 patients with good postsurgical outcomes (Engel I) and 49 with poor outcomes (Engel II-IV). The GNN predictions demonstrated a significantly better (P < 0.05, Mann-Whitney-U test) area under the precision-recall curve in patients with good outcomes (area under the precision-recall curve: 0.69) compared with those with poor outcomes (area under the precision-recall curve: 0.33), indicating that the model captures clinically relevant targets in successful cases. In patients with poor outcomes, the graph neural network proposed alternative intervention sites that diverged from the original clinical plans, highlighting its potential to identify alternative therapeutic targets. We show that topology-aware GNNs significantly outperformed (P < 0.05, Wilcoxon signed-rank test) traditional neural networks while using the same intracranial EEG features, emphasizing the importance of incorporating implantation topology into predictive models. These findings uncover the potential of GNNs to automatically suggest targets for epilepsy surgery, which can assist the clinical team during the planning process.
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: A rapid and reliable neuropsychological protocol is essential for the efficient assessment of neurocognitive constructs related to emergent neurodegenerative diseases. We developed an AI-assisted, digitally administered/scored neuropsychological protocol that can be remotely administered in ~10 min. This protocol assesses the requisite neurocognitive constructs associated with emergent neurodegenerative illnesses. METHODS: The protocol was administered to 77 ambulatory care/memory clinic patients (56.40% women; 88.50% Caucasian). The protocol includes a 6-word version of the Philadelphia (repeatable) Verbal Learning Test [P(r)VLT], three trials of 5 digits backward from the Backwards Digit Span Test (BDST), and the "animal" fluency test. The protocol provides a comprehensive set of traditional "core" measures that are typically obtained through paper-and-pencil tests (i.e., serial list learning, immediate and delayed free recall, recognition hits, percent correct serial order backward digit span, and "animal" fluency output). Additionally, the protocol includes variables that quantify errors and detail the processes used in administering the tests. It also features two separate, norm-referenced summary scores specifically designed to measure executive control and memory. RESULTS: Using four core measures, we used cluster analysis to classify participants into four groups: cognitively unimpaired (CU; n = 23), amnestic mild cognitive impairment (MCI; n = 17), dysexecutive MCI (n = 23), and dementia (n = 14). Subsequent analyses of error and process variables operationally defined key features of amnesia (i.e., rapid forgetting, extra-list intrusions, profligate responding to recognition foils); key features underlying reduced executive abilities (i.e., BDST items and dysexecutive errors); and the strength of the semantic association between successive responses on the "animal" fluency test. Executive and memory index scores effectively distinguished between all four groups. There was over 90% agreement between how cluster analysis of digitally obtained measures classified patients compared to classification using a traditional comprehensive neuropsychological protocol. The correlations between digitally obtained outcome variables and analogous paper/pencil measures were robust. DISCUSSION: The digitally administered protocol demonstrated a capacity to identify patterns of impaired performance and classification similar to those observed with standard paper/pencil neuropsychological tests. The inclusion of both core measures and detailed error/process variables suggests that this protocol can detect subtle, nuanced signs of early emergent neurodegenerative illness efficiently and comprehensively.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: In Slovakia, a mandatory national universal pediatric total cholesterol (TC) screening program is in place to identify cases of familial hypercholesterolemia (FH). However, the program's effectiveness has not been systematically assessed. OBJECTIVE: This study aimed to estimate the prevalence of FH among parents of children that had elevated TC levels identified during screening. METHODS: This prospective, non-interventional, observational study enrolled parents of 11-year-old children who underwent TC screening in 23 selected pediatric outpatient clinics between 2017 and 2018. FH was diagnosed using the Dutch Lipid Clinic Network (DLCN) criteria and targeted next-generation sequencing. The primary objective was to estimate the proportion of children with a TC level of >188 mg/dL (>4.85 mmol/L) who had a parent with a confirmed diagnosis of FH. RESULTS: A total of 112 parents of 56 children with an elevated TC level were enrolled. Five children (8.9%) had a parent in whom FH was genetically confirmed. Without genetic analysis, all five parents would only be diagnosed with "possible FH" by DLCN criteria. Of parents, 83.9% (n = 94/112) had an low-density lipoprotein cholesterol (LDL-C) level of >116 mg/dL (>3 mmol/L), but only 5.3% (n = 5/94) received lipid-lowering therapy. Among the five parents with genetically confirmed FH, all had an LDL-C level >116 mg/dL (>3 mmol/L), with a mean (±SD) of 191 (±24) mg/dL (4.94 [±0.61] mmol/L). Only two of these parents received lipid-lowering therapy. CONCLUSIONS: The present study demonstrates the significance of mandatory universal pediatric TC screening in identifying families with FH and other at-risk families in need of lipid-lowering therapy.
- MeSH
- cholesterol * krev MeSH
- dítě MeSH
- dospělí MeSH
- hyperlipoproteinemie typ II * diagnóza epidemiologie krev genetika MeSH
- LDL-cholesterol krev MeSH
- lidé MeSH
- plošný screening * metody MeSH
- prospektivní studie MeSH
- rodiče MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Geografické názvy
- Slovenská republika MeSH
BACKGROUND: Current SARS-CoV-2 detection platforms lack the ability to differentiate among variants of concern (VOCs) in an efficient manner. CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) based detection systems have the potential to transform the landscape of COVID-19 diagnostics due to their programmability; however, most of these methods are reliant on either a multi-step process involving amplification or elaborate guide RNA designs. METHODS: Three Cas12b proteins from Alicyclobacillus acidoterrestris (AacCas12b), Alicyclobacillus acidiphilus (AapCas12b), and Brevibacillus sp. SYP-B805 (BrCas12b) were expressed and purified, and their thermostability was characterised by differential scanning fluorimetry, cis-, and trans-cleavage activities over a range of temperatures. The BrCas12b was then incorporated into a reverse transcription loop-mediated isothermal amplification (RT-LAMP)-based one-pot reaction system, coined CRISPR-SPADE (CRISPR Single Pot Assay for Detecting Emerging VOCs). FINDINGS: Here we describe a complete one-pot detection reaction using a thermostable Cas12b effector endonuclease from Brevibacillus sp. to overcome these challenges detecting and discriminating SARS-CoV-2 VOCs in clinical samples. CRISPR-SPADE was then applied for discriminating SARS-CoV-2 VOCs, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) and validated in 208 clinical samples. CRISPR-SPADE achieved 92·8% sensitivity, 99·4% specificity, and 96·7% accuracy within 10-30 min for discriminating the SARS-CoV-2 VOCs, in agreement with S gene sequencing, achieving a positive and negative predictive value of 99·1% and 95·1%, respectively. Interestingly, for samples with high viral load (Ct value ≤ 30), 100% accuracy and sensitivity were attained. To facilitate dissemination and global implementation of the assay, a lyophilised version of one-pot CRISPR-SPADE reagents was developed and combined with an in-house portable multiplexing device capable of interpreting two orthogonal fluorescence signals. INTERPRETATION: This technology enables real-time monitoring of RT-LAMP-mediated amplification and CRISPR-based reactions at a fraction of the cost of a qPCR system. The thermostable Brevibacillus sp. Cas12b offers relaxed primer design for accurately detecting SARS-CoV-2 VOCs in a simple and robust one-pot assay. The lyophilised reagents and simple instrumentation further enable rapid deployable point-of-care diagnostics that can be easily expanded beyond COVID-19. FUNDING: This project was funded in part by the United States-India Science & Technology Endowment Fund- COVIDI/247/2020 (P.K.J.), Florida Breast Cancer Foundation- AGR00018466 (P.K.J.), National Institutes of Health- NIAID 1R21AI156321-01 (P.K.J.), Centers for Disease Control and Prevention- U01GH002338 (R.R.D., J.A.L., & P.K.J.), University of Florida, Herbert Wertheim College of Engineering (P.K.J.), University of Florida Vice President Office of Research and CTSI seed funds (M.S.), and University of Florida College of Veterinary Medicine and Emerging Pathogens Institute (R.R.D.).
- MeSH
- Brevibacillus * genetika MeSH
- COVID-19 * diagnóza MeSH
- guide RNA, Kinetoplastida MeSH
- lidé MeSH
- SARS-CoV-2 genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The article introduces the enhancements made to the IsoArcH database for isotope paleopathology. This includes the addition of new metadata fields, which allow for describing abnormal anatomical or physiological conditions in humans and animals at either the individual or sample level. To showcase the novel features of the database, the article features a unique dataset of carbon and nitrogen isotope values obtained on bulk bone collagen from 42 clinically-documented cases of the Jedlička pathological-anatomical reference collection, dating from the 19th century CE and curated at the National Museum in Prague, Czechia. The dataset includes 70 combined isotopic measurements from individuals who underwent anatomizations between 1841 and 1900 and had distinct bone diseases/disorders: i.e. syphilis, rickets, osteosarcoma, osteomyelitis, and healed fractures. Finally, the article highlights the value of the data in helping the isotope bioarchaeology and paleopathology communities in their understanding of disease processes.
- Publikační typ
- časopisecké články MeSH