long noncoding RNA
Dotaz
Zobrazit nápovědu
Multiple myeloma is the second most common hematological malignancy characterized by focal lesions of malignant plasma cells in the bone marrow. These lesions contain subclones that directly influence survival of patients. Bone marrow biopsies are single-site biopsies and thus cannot contain all information about the tumor. In contrast, liquid biopsies analyze circulating cells and molecules that are secreted from all sites of the tumor. Long noncoding RNA molecules are one class of these molecules. We performed a two-phase biomarker study investigating lncRNA expression profiles in exosomes of peripheral blood serum of newly diagnosed multiple myeloma (MM) patients, monoclonal gammopathy of undetermined significance (MGUS) patients in comparison with healthy donors (HD). Surprisingly, this analysis revealed dysregulation of only one exosomal lncRNA PRINS in MM vs HD. Overall, MM and MGUS patients were distinguished from HD with sensitivity of 84.9% and specificity of 83.3%. Our study suggests a possible diagnostic role for exosomal lncRNA PRINS in monoclonal gammopathies patients.
- MeSH
- dospělí MeSH
- exozómy metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- míra přežití MeSH
- mnohočetný myelom * krev diagnóza mortalita MeSH
- přežití bez známek nemoci MeSH
- RNA dlouhá nekódující krev MeSH
- RNA nádorová krev MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
Meningiomas represent one of the most common types of primary intracranial tumours. However, the specific molecular mechanisms underlying their pathogenesis remain uncertain. Loss of chromosomes 22q, 1p, and 14q have been implicated in most meningiomas. Inactivation of the NF2 gene at 22q12 has been identified as an early event in their pathogenesis, whereas abnormalities of chromosome 14 have been reported in higher-grade as well as recurrent tumours. It has long been supposed that chromosome 14q32 contains a tumour suppressor gene. However, the identity of the potential 14q32 tumour suppressor remained elusive until the Maternally Expressed Gene 3 (MEG3) was recently suggested as an ideal candidate. MEG3 is an imprinted gene located at 14q32 that encodes a non-coding RNA (ncRNA). In meningiomas, loss of MEG3 expression, its genomic DNA deletion and degree of promoter methylation have been found to be associated with aggressive tumour growth. These findings indicate that MEG3 may have a significant role as a novel long noncoding RNA tumour suppressor in meningiomas.
Východiska: Rakovina děložního čípku jako běžný urogenitální nádor způsobuje u žen značné zdravotní problémy. Byla vynaložena snaha o identifikaci patogeneze za účelem nalezení cílených terapií. Bylo prokázáno, že dlouhé nekódující ribonukleové kyseliny (lncRNA) regulují několik signálních drah a genů souvisejících s nádory, což přispívá k patogenezi lidských malignit vč. rakoviny děložního čípku. V rámci prezentovaného článku jsme do prosince 2017 vyhledávali klíčová slova "cervical cancer" (rakovina děložního čípku) nebo "cervical neoplasm" (cervikální novotvar) a "long non-coding RNA" (dlouhá nekódující RNA) nebo "lncRNA", publikovaná v databázi PubMed, Google scholar, Web of Science a Scopus. Cíl: Zjistit, jakou roli hrají lncRNA v rakovině děložního čípku. Závěry: LncRNA ovlivňují patogenezi rakoviny děložního čípku prostřednictvím četných mechanismů, jako je vytváření tzv. scaffolds pro sestavení proteinových komplexů, sloužící jako tzv. directors pro získávání proteinů, fungujících jako transkripční zesilovače pomocí remodelování chromatinu, sloužící jako tzv. návnady k uvolnění proteinů z chromatinu nebo zvrácení účinků jiné regulační nekódující RNA jako jsou mikroRNA. Analýza signálních drah ukázala, že v procesu patogeneze rakoviny děložního čípku několik lncRNA reguluje dráhy PI3K/ Akt/ mTOR, Wnt-β catenin a Notch signální dráhy. Navíc exprese několika lncRNA byla spojena s infekcí virem lidského papilomu. Identifikace lncRNA, které mění signální dráhy související s nádory, a následná expresní analýza těchto lncRNA ve vzorcích pacientů by mohly pomoci získat efektivní cílené terapie.
Summary Background: Cervical cancer as a common urogenital cancer among women has caused signifi - cant health problems. Efforts have been made to identify its pathogenic process in order to find targeted ther apies. Long non-cod ing ribonucleic acids (lncRNAs) have been shown to regulate several cancer-related pathways and genes that contribute to pathogenesis of human malignancies, includ ing cervical cancer. In the present review, we searched PubMed, Google scholar, Web of Science and Scopus databases for key words "cervical cancer" or "cervical neoplasm" and "long non-coding RNA" or "lncRNA" (up to December 2017). Aim: To elaborate the role of lncRNAs in cervical cancer. Conclusions: LncRNAs affect cervical cancer pathogenesis through numerous mechanisms, such as making scaffolds for assembly of protein complexes, serving as directors to recruit proteins, functioning as transcriptional enhancers through chromatin remodeling, serving as decoys to free up proteins from chromatin, or revers ing the effects of other regulatory non-cod ing RNAs, such as microRNAs. Pathway-based analysis showed that several lncRNAs modulate PI3K/ Akt/ mTOR, Wnt-β catenin and Notch pathways in the process of cervical cancer pathogenesis. In addition, expression of a handful of lncRNAs has been associated with human papilloma virus infection. Identification of lncRNAs that alter cancer-related signaling pathways and subsequent expression analysis of these lncRNAs in patients’ samples would help to design ef ective targeted ther apies.
- MeSH
- lidé MeSH
- nádory děložního čípku * genetika MeSH
- onkogeny MeSH
- RNA dlouhá nekódující * MeSH
- tumor supresorové geny MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- přehledy MeSH
Oocyte-to-embryo transition is a process during which an oocyte ovulates, is fertilized, and becomes a developing embryo. It involves the first major genome reprogramming event in life of an organism where gene expression, which gave rise to a differentiated oocyte, is remodeled in order to establish totipotency in blastomeres of an early embryo. This remodeling involves replacement of maternal RNAs with zygotic RNAs through maternal RNA degradation and zygotic genome activation. This review is focused on expression and function of long noncoding RNAs (lncRNAs) and small RNAs during oocyte-to-embryo transition in mammals. LncRNAs are an assorted rapidly evolving collection of RNAs, which have no apparent protein-coding capacity. Their biogenesis is similar to mRNAs including transcriptional control and post-transcriptional processing. Diverse molecular and biological roles were assigned to lncRNAs although most of them probably did not acquire a detectable biological role. Since some lncRNAs serve as precursors for small noncoding regulatory RNAs in RNA silencing pathways, both types of noncoding RNA are reviewed together.
- MeSH
- blastomery chemie MeSH
- gastrulace MeSH
- lidé MeSH
- malá nekódující RNA genetika MeSH
- RNA dlouhá nekódující genetika MeSH
- savci embryologie genetika MeSH
- stabilita RNA MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Východiska: Karcinom plic je jedním z nejfatálnějších karcinomů jak u mužů, tak u žen. Tento typ karcinomu je rozdělen do různých podtypů, k nimž patří nemalobuněčný karcinom plic (non-small cell lung cancer -NSCLC). NSCLC představuje asi 80 % všech případů. Bylo prokázáno, že dlouhé nekódující RNA (long non-coding RNA - lncRNA) ovlivňují patogenezi karcinomu plic. Vliv lncRNA LINC01433 na tento typ karcinomu u íránských pacientů však není jednoznačný. Cíl: V tomto projektu jsme pomocí kvantitativní polymerázové řetězové reakce v reálném čase vyhodnotili expresi LINC01433 ve 42 vzorcích NSCLC a jejich párových nenádorových tkáních. Vzorky byly odebrány od pacientů přijatých do nemocnice Labbafinejad v letech 2016-2017. Výsledky: Nebyl nalezen žádný významný rozdíl v expresi LINC01433 mezi nádorovými a nenádorovými tkáněmi (poměr exprese 0,67; p = 0,42). Exprese této lncRNA nebyla spojena s žádnými klinickými a demografickými údaji vč. věku, pohlaví, historie kouření, stadia nebo podtypu karcinomu. Závěr: Na základě podobných hladin exprese této lncRNA mezi nádorovými a nenádorovými tkáněmi a chybějící asociace mezi hladinami exprese a klinickými údaji nemá tato lncRNA vliv na karcinom plic u íránských pacientů.
Background: Lung cancer is one of the most fatal human cancers both in males and females. This type of cancer is categorized to different subtypes among them is non-small cell lung cancer (NSCLC). NSCLC accounts for about 80% of all cases. Long non-coding RNAs (lncRNAs) have been shown to influence the pathogenic course of lung cancer. However, the contribution of LINC01433 lncRNA in this type of cancer in Iranian patients is not clear. Purpose: In the current project, we evaluated expression of LINC01433 in 42 NSCLC samples and their paired non-tumoral tissues using quantitative real time polymerase chain reaction method. Samples were collected from patients admitted to Labbafinejad Hospital during 2016-2017. Results: There was no significant difference in the expression of LINC01433 between tumoral and non-tumoral tissues (expression ratio 0.67, p = 0.42). Expression of this lncRNA was not associated with any of clinical and demographic data including age, gender, smoking history, stage or cancer subtype. Conclusion: Based on the similar expression levels of this lncRNA between tumoral and non-tumoral tissues and lack of association between expression levels and clinical data, this lncRNA is not a possible contributor to lung cancer in Iranian patients. However, expression analysis of this lncRNA in larger sample sizes is needed to verify our results.
- MeSH
- dospělí MeSH
- exprese genu MeSH
- klinická studie jako téma MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory plic * genetika MeSH
- RNA dlouhá nekódující analýza MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
Dlouhé nekódující molekuly RNA (long non-coding RNA – lncRNA) jsou definovány jako molekuly o délce více než 200 nukleotidů, které jsou lokalizovány v jádře a cytoplazmě buněk. Přestože u většiny lncRNA jejich konkrétní funkce nejsou dosud známé, je evidentní, že se podílejí na celé řadě biologických procesů. LncRNA hrají klíčové role jak v transkripčních, tak v post‐transkripčních regulačních drahách a podílejí se na významných buněčných procesech, jako je proliferace, diferenciace, apoptóza a v neposlední řadě i na patogenezi různých nemocí. Svou deregulací se významně podílejí také na procesech nádorové transformace. V tomto přehledovém článku jsou popsány vlastnosti, funkce a molekulární podstata lncRNA a také jejich diagnostický potenciál. Pozornost je věnována zejména jejich využití u nejčastěji diagnostikovaných nádorových onemocnění v české populaci, a to u kolorektálního karcinomu, karcinomu prsu a prostaty.
Long non-coding RNA molecules (lncRNA) are defined as molecules over 200 nucleotides long that are localized in the nucleus and cytoplasm of cells. Although function of most lnRNA is not known, it is obvious that they are involved in various biological processes. LncRNA play a key role in transcriptional as well as post‐transcriptional regulatory pathways and are involved in important cell processes, such as proliferation, differentiation, apoptosis but also pathogenesis of various diseases. Their dysregulation is important in steps of tumor transformation. In this review, we will describe the nature, function and molecular basis of these molecules as well as their diagnostic potential. The main focus of this review is the usage of these molecules in the most often diagnosed tumors in the Czech population – colorectal carcinoma, breast and prostate carcinomas. Key words: long non-coding RNA molecules – tumor markers – lncRNA deregulation – solid tumors This work was supported by the grant of the Czech Ministry of Health AZV 15-29508A. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 23. 10. 2015 Accepted: 2. 12. 2015
- MeSH
- kolorektální nádory genetika MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- nádory prostaty genetika MeSH
- nádory prsu genetika MeSH
- regulace genové exprese u nádorů * MeSH
- RNA dlouhá nekódující * analýza izolace a purifikace klasifikace MeSH
- signální transdukce genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Celogenomové sekvenační analýzy odhalily, že převážná část lidského genomu je transkribována, a identifikovaly tisíce protein nekódujících transkriptů. Nekódující RNA (ncRNA) se dělí na dvě hlavní skupiny: malé a dlouhé ncRNA. Tento přehledový článek je zaměřen na ncRNA s regulační funkcí, a to především na mikroRNA a dlouhé ncRNA. Tyto ncRNA regulují genovou expresi na transkripční a posttranskripční úrovni. V tomto kontextu ncRNA zasahují do regulace většiny buněčných procesů a jejich deregulace má vážné dopady na fenotyp. Již stovky studií prokázaly zapojení ncRNA do patogeneze mnoha onemocnění, od metabolických poruch přes onemocnění orgánových systémů až po různé typy nádorů. Z klinického hlediska patří ncRNA do nové generace diagnostických a prognostických biomarkerů s velkým potenciálem. Vzhledem k vysoké tkáňové specifciitě a schopnosti regulovat více genů často v rámci jedné signální dráhy představují ncRNA i atraktivní terapeutické cíle. Narůstající poznatky o širokém spektru působení ncRNA ukazují na klíčovou roli těchto transkriptů v regulaci exprese. Řada aspektů z biologie ncRNA ještě není objasněna a jejich pochopení nám poskytne nový pohled na komplexnost regulační sítě.
Whole-genome sequencing analyses revealed that the majority of the human genome is transcribed and identified thousands of protein non-coding transcripts. Non-coding RNAs (ncRNAs) are divided into two main groups: small and long ncRNAs. This review is focused on the regulatory ncRNAs mainly on microRNAs and long ncRNAs. These ncRNAs regulate gene expression at the transcriptional and post-transcriptional levels. In this context, ncRNAs are involved in the regulation of most cellular processes and their deregulation has serious impacts on the phenotype. Hundreds of studies have implicated ncRNAs in the pathogenesis of many diseases ranging from metabolic disorders to diseases of organ systems as well as various types of cancers. Clinically, ncRNAs belong to a new generation of diagnostic and prognostic biomarkers with a great potential. Due to high tissue specificity and ability to regulate multiple genes often within one signaling pathway, ncRNAs represent attractive therapeutic targets. Increasing knowledge about a wide spectrum of ncRNA actions demonstrate a pivotal role of these transcripts in expression regulation. Many aspects of the ncRNA biology are still unclear and their understanding will provide us a new perspective on the complexity of the regulatory network.
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second cancer-related cause of death by 2030. Identifying novel risk factors, including genetic risk loci, could be instrumental in risk stratification and implementation of prevention strategies. Long noncoding RNAs (lncRNAs) are involved in regulation of key biological processes, and the possible role of their genetic variability has been unexplored so far. Combining genome wide association studies and functional data, we investigated the genetic variability in all lncRNAs. We analyzed 9893 PDAC cases and 9969 controls and identified a genome-wide significant association between the rs7046076 SNP and risk of developing PDAC (P = 9.73 × 10-9 ). This SNP is located in the NONHSAG053086.2 (lnc-SMC2-1) gene and the risk allele is predicted to disrupt the binding of the lncRNA with the micro-RNA (miRNA) hsa-mir-1256 that regulates several genes involved in cell cycle, such as CDKN2B. The CDKN2B region is pleiotropic and its genetic variants have been associated with several human diseases, possibly though an imperfect interaction between lncRNA and miRNA. We present a novel PDAC risk locus, supported by a genome-wide statistical significance and a plausible biological mechanism.
- MeSH
- celogenomová asociační studie MeSH
- duktální karcinom slinivky břišní genetika MeSH
- genetická predispozice k nemoci MeSH
- inhibitor p15 cyklin-dependentní kinasy genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- nádory slinivky břišní genetika MeSH
- RNA dlouhá nekódující genetika MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The first described small non-coding RNA was microRNA lin-4 from Caenorhabditis elegans in 1993. This miRNA has begun a new age of research leading to the discovery of previously unknown, endogenous, single stranded, 22–25 nucleotides long molecules regulating nearly 30 % of genes. Recently, it was demonstrated that a number of organic substances presented in the diet induces the formation of various miRNAs. Besides this, plant and animal miRNA may enter the host organisms as food. In host organism, they can resist degradation and can enter the bloodstream. Although lacking sufficient experimental support, the discussion whether such dietary miRNAs can participate in post-transcriptional regulation of host genes is an actual topic. Either of these mechanisms could also explain some of the biological activities of medicinal plants. Non-coding RNAs have also significance as diagnostic biomarkers of some diseases or as targets for complex disease therapies.
- MeSH
- biologické markery metabolismus MeSH
- genetická transkripce genetika imunologie MeSH
- iniciace genetické transkripce MeSH
- lidé MeSH
- mikro RNA izolace a purifikace metabolismus MeSH
- nekódující RNA * genetika izolace a purifikace metabolismus MeSH
- potraviny MeSH
- regulace genové exprese u nádorů genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
Lidský genom obsahuje asi 22 000 protein kódujících genů, které dávají vznik ještě většímu množství messengerové RNA (mRNA). Výsledky projektu ENCODE z roku 2012 však ukazují, že byť je až 90 % našeho genomu aktivně přepisováno, tak mRNA dávající vznik proteinům tvoří pouze 2–3 % z celkového množství přepsané RNA. Zbývající RNA transkripty nedávají vznik proteinům a nesou proto označení „nekódující RNA“. Dříve se nekódující RNA považovala za „temnou hmotu genomu“, nebo za „odpad“, který se v naší DNA nahromadil v průběhu evoluce. Dnes již víme, že nekódující RNA plní v našem těle celou řadu regulačních funkcí – zasahují do epigenetických procesů od remodelace chromatinu k metylaci histonů, nebo do vlastního procesu transkripce, či do posttranskripčních procesů. Dlouhé nekódující RNA (lncRNA) jsou jednou ze tříd nekódujících RNA s délkou nad 200 nukleotidů (nekódující RNA s délkou pod 200 nukleotidů označujeme jako krátké nekódující RNA). lncRNA představují velice pestrou a rozsáhlou skupinu molekul s rozličnými regulačními funkcemi. Můžeme je identifkovat ve všech myslitelných buněčných typech, či tkáních, nebo dokonce v extracelulárním prostoru, a to včetně krve, potažmo plazmy. Jejich hladiny se mění v průběhu organogeneze, jsou specifické pro jednotlivé tkáně a k jejich změnám dochází i při vzniku různých onemocnění, včetně aterosklerózy. Cílem tohoto souhrnného článku je jednak představit problematiku lncRNA a některé jejich konkrétní zástupce ve vztahu k procesu aterosklerózy (popsat zapojení lncRNA do biologie endotelových buněk, hladkosvalových buněk cévní stěny, či buněk imunitních), a dále poukázat na možný klinický potenciál lncRNA, ať již v diagnostice či terapii aterosklerózy a jejích klinických manifestací.
The human genome contains about 22 000 protein-coding genes that are transcribed to an even larger amount of messenger RNAs (mRNA). Interestingly, the results of the project ENCODE from 2012 show, that despite up to 90 % of our genome being actively transcribed, protein-coding mRNAs make up only 2–3 % of the total amount of the transcribed RNA. The rest of RNA transcripts is not translated to proteins and that is why they are referred to as “non-coding RNAs”. Earlier the non-coding RNA was considered “the dark matter of genome”, or “the junk”, whose genes has accumulated in our DNA during the course of evolution. Today we already know that non-coding RNAs fulfil a variety of regulatory functions in our body – they intervene into epigenetic processes from chromatin remodelling to histone methylation, or into the transcription process itself, or even post-transcription processes. Long non-coding RNAs (lncRNA) are one of the classes of non-coding RNAs that have more than 200 nucleotides in length (non-coding RNAs with less than 200 nucleotides in length are called small non-coding RNAs). lncRNAs represent a widely varied and large group of molecules with diverse regulatory functions. We can identify them in all thinkable cell types or tissues, or even in an extracellular space, which includes blood, specifically plasma. Their levels change during the course of organogenesis, they are specific to different tissues and their changes also occur along with the development of different illnesses, including atherosclerosis. This review article aims to present lncRNAs problematics in general and then focuses on some of their specific representatives in relation to the process of atherosclerosis (i.e. we describe lncRNA involvement in the biology of endothelial cells, vascular smooth muscle cells or immune cells), and we further describe possible clinical potential of lncRNA, whether in diagnostics or therapy of atherosclerosis and its clinical manifestations.
- MeSH
- ateroskleróza * patofyziologie MeSH
- endotel fyziologie MeSH
- exprese genu MeSH
- lidé MeSH
- RNA dlouhá nekódující * fyziologie klasifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH