MicroRNAs (miRNAs) have emerged as important regulators of gene expression in various biological processes, including cancer. miR-182-5p has gained attention for its potential implications in gynecologic cancers, including breast, ovarian, endometrial, and cervical cancers. miR-182-5p dysregulation has been associated with multiple facets of tumor biology in gynecologic cancers, including tumor initiation, progression, metastasis, and therapeutic response. Studies have highlighted its involvement in key signaling pathways and cellular processes that contribute to cancer development and progression. In addition, miR-182-5p has shown potential as a diagnostic and prognostic biomarker, with studies demonstrating its correlation with clinicopathological features and patient outcomes. Furthermore, the therapeutic potential of miR-182-5p is being explored in gynecologic cancers. Strategies such as miRNA mimics or inhibitors targeting miR-182-5p have shown promise in preclinical and early clinical studies. These approaches aim to modulate miR-182-5p expression, restoring normal cellular functions and potentially enhancing treatment responses. Understanding the biologic and clinical implications of miR-182-5p in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized medicine approaches. Further investigations are needed to unravel the specific target genes and pathways regulated by miR-182-5p. It is important to consider the emerging biologic and clinical implications of miR-182-5p in gynecologic cancers.
- MeSH
- Humans MeSH
- MicroRNAs * genetics MeSH
- Biomarkers, Tumor genetics MeSH
- Genital Neoplasms, Female * genetics therapy MeSH
- Prognosis MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
PURPOSE: TACE induces variable systemic effects by producing factors that promote inflammation, oncogenesis, and angiogenesis. Here we compare concentrations of microRNAs (miR-21, miR-210 and miR-34a) and vascular endothelial growth factor (VEGF) in hepatocellular carcinoma (HCC) patients undergoing TACE with degradable (DSM) and nondegradable (DEB) particles and potential use of these biomarker changes for prediction of patient outcomes. MATERIALS AND METHODS: Overall, 52 patients with HCC treated with DSM TACE (24 patients) and DEB TACE (28 patients) were included in this prospective study. Concentrations of studied biomarkers were measured from blood plasma preprocedurally, immediately (< 90 min) postprocedurally, and 24-h after TACE. Levels were compared between DSM and DEB TACE and correlated with treatment response six and 12 months after the first TACE. RESULTS: Both DSM and DEB TACE elevated plasma levels of miR-21, miR-34a, and miR-210 at 24 h post-procedure compared to baseline levels (FC 1.25-4.0). MiR-34a elevation immediately after TACE was significantly associated with nonprogressive disease compared to those with progressive disease at both six months (FCa: p = 0.014) and 12 months (FCa: p = 0.029) post-TACE. No significant biomarker changes were found between the embolization particle groups. However, VEGF levels showed a decrease only in the DSM TACE group (FC24: p = < 0.001). CONCLUSION: Embolization particle type did not significantly impact miRNA or VEGF changes post-TACE. However, miR-34a elevation immediately after the procedure predicts better patient outcome and may prove useful as a biomarkers for the monitoring of clinical outcomes. LEVEL OF EVIDENCE: Level 3 Prospective cohort study.
- MeSH
- Biomarkers blood MeSH
- Chemoembolization, Therapeutic * methods MeSH
- Carcinoma, Hepatocellular * therapy blood genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- MicroRNAs * blood MeSH
- Biomarkers, Tumor * blood MeSH
- Liver Neoplasms * therapy genetics blood MeSH
- Prospective Studies MeSH
- Aged MeSH
- Vascular Endothelial Growth Factor A * blood MeSH
- Treatment Outcome MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Acute kidney injury (AKI) due to gentamicin nephrotoxicity is a significant concern in clinical medicine, particularly in patients receiving prolonged or high-dose gentamicin therapy. Gentamicin is an aminoglycoside antibiotic frequently used in the treatment of a range of bacterial infections. However, its use is associated with nephrotoxicity which can manifest as AKI. Due to this, it is crucial to diagnose promptly and manage treatment effectively. Ongoing studies are therefore focusing on non-protein-coding RNAs as potential biomarkers for AKI. Numerous microRNAs (miRNAs) have been implicated in gentamicin-induced nephrotoxicity and AKI. They participate in pathways associated with inflammation, cell death, and oxidative stress and each of these factors play critical roles in the development of gentamicin-induced kidney injury. Research studies have demonstrated changes in the expression levels of these miRNAs in response to gentamicin exposure both in vitro and in in vivo models, as well as in human clinical trials involving patients receiving gentamicin therapy. The dysregulation of these miRNAs correlates with the severity of kidney injury and may serve as sensitive biomarkers for early detection and monitoring of AKI induced by gentamicin.
- MeSH
- Acute Kidney Injury * chemically induced diagnosis MeSH
- Anti-Bacterial Agents * adverse effects MeSH
- Biomarkers * MeSH
- Gentamicins * adverse effects MeSH
- Humans MeSH
- MicroRNAs * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
INTRODUCTION: Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS: This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS: Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION: We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice. INTRODUCTION: Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS: This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS: Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION: We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice.
- MeSH
- Adult MeSH
- Neoplasm Invasiveness MeSH
- Middle Aged MeSH
- Humans MeSH
- Lymphatic Metastasis MeSH
- MicroRNAs * genetics metabolism MeSH
- Biomarkers, Tumor * genetics metabolism MeSH
- Breast Neoplasms * pathology genetics metabolism mortality MeSH
- Gene Expression Regulation, Neoplastic * MeSH
- RNA, Small Nuclear * genetics metabolism MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: Central nervous system (CNS) involvement in diffuse large B-cell lymphoma (DLBCL) is a rare but serious condition requiring accurate diagnostics. Cerebrospinal fluid (CSF) analysis plays a crucial role, particularly in cases where biopsy is not feasible, and imaging is inconclusive. AREAS COVERED: Chemical markers have limitations, particularly in low-cellularity samples. Novel molecular techniques, including circulating tumor DNA (ctDNA) analysis and microRNAs (miRNAs), are gaining prominence for their ability to detect gene mutations at diagnosis and monitor minimal residual disease during follow-up. The sensitivity and specificity of genetic mutations, particularly MYD88 L265P, in combination with interleukin-10 (IL-10) levels, are discussed. The literature search methodology involved reviewing relevant studies and clinical data.This review examines both traditional and emerging methods for CSF analysis in diagnosing CNS involvement in DLBCL. Conventional approaches such as cytomorphology, flow cytometry, and biochemical markers have limitations, particularly in low-cellularity samples. Novel molecular techniques, including ctDNA analysis and miRNAs, are gaining prominence for their ability to detect gene mutations at diagnosis and monitor minimal residual disease during follow-up. The sensitivity and specificity of genetic mutations, particularly MYD88 L265P, in combination with interleukin-10 (IL-10) levels, are discussed. The literature search methodology involved reviewing relevant studies and clinical data. EXPERT OPINION: Advancements in CSF biomarker analysis are improving the diagnosis of CNS lymphoma, aiding early detection and personalized treatment approaches. However, further research and broader clinical validation are necessary for their routine implementation.
- MeSH
- Circulating Tumor DNA cerebrospinal fluid genetics MeSH
- Molecular Diagnostic Techniques methods MeSH
- Lymphoma, Large B-Cell, Diffuse * diagnosis cerebrospinal fluid genetics pathology MeSH
- Interleukin-10 genetics cerebrospinal fluid MeSH
- Humans MeSH
- Meningeal Neoplasms * diagnosis cerebrospinal fluid genetics MeSH
- MicroRNAs genetics cerebrospinal fluid MeSH
- Mutation MeSH
- Myeloid Differentiation Factor 88 genetics MeSH
- Biomarkers, Tumor * cerebrospinal fluid genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Only a limited number of biomarkers guide personalized management of pancreatic neuroendocrine tumors (PanNETs). Transcriptome profiling of microRNA (miRs) and mRNA has shown value in segregating PanNETs and identifying patients more likely to respond to treatment. Because miRs are key regulators of mRNA expression, we sought to integrate expression data from both RNA species into miR-mRNA interaction networks to advance our understanding of PanNET biology. METHODS: We used deep miR/mRNA sequencing on six low-grade/high-risk, well-differentiated PanNETs compared with seven non-diseased tissues to identify differentially expressed miRs/mRNAs. Then we crossed a list of differentially expressed mRNAs with a list of in silico predicted mRNA targets of the most and least abundant miRs to generate high probability miR-mRNA interaction networks. RESULTS: Gene ontology and pathway analyses revealed several miR-mRNA pairs implicated in cellular processes and pathways suggesting perturbed neuroendocrine function (miR-7 and Reg family genes), cell adhesion (miR-216 family and NLGN1, NCAM1, and CNTN1; miR-670 and the claudins, CLDN1 and CLDN2), and metabolic processes (miR-670 and BCAT1/MPST; miR-129 and CTH). CONCLUSION: These novel miR-mRNA interaction networks identified dysregulated pathways not observed when assessing mRNA alone and provide a foundation for further investigation of their utility as diagnostic and predictive biomarkers.
- MeSH
- Gene Regulatory Networks MeSH
- Middle Aged MeSH
- Humans MeSH
- RNA, Messenger * genetics MeSH
- MicroRNAs * genetics MeSH
- Biomarkers, Tumor genetics MeSH
- Pancreatic Neoplasms * genetics pathology diagnosis MeSH
- Neuroendocrine Tumors * genetics pathology diagnosis MeSH
- Pancreas * metabolism pathology MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Gene Expression Profiling MeSH
- Transcriptome MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Androgen deprivation therapy has long been the first-line treatment for hormone-sensitive prostate cancer (HSPC). After progression to castration-resistant prostate cancer (CRPC), androgen receptor pathway inhibitors (ARPIs) are commonly used. Recently, combined therapy with androgen deprivation and an ARPI has been recommended for metastatic HSPC patients. Novel markers are urgently needed for monitoring this disease and for making therapeutic decisions. Plasma samples were collected from 140 patients with either metastatic HSPC (n = 72) or CRPC (n = 68) before the start of ARPI therapy. Digital PCR was used to assess AR gene amplification, while the expression levels of miR-375 were measured by quantitative PCR. Sixteen other clinical markers were also evaluated, including prostate-specific antigen (PSA), chromogranin A (CGA), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), C-reactive protein (CRP), lymphocyte-to-monocyte ratio, and platelet count. A multivariate analysis, adjusted for age and metastatic dissemination, identified miR-375 expression and lymphocyte-to-monocyte ratio to be the independent negative predictors of ARPI therapy failure in CRPC patients. Regarding the HSPC patients, this article reports the primary finding of the independent negative predictive value of platelet count, CRP, and CGA for the failure of combined androgen deprivation therapy and ARPI.
- MeSH
- Receptors, Androgen genetics MeSH
- C-Reactive Protein * metabolism MeSH
- Chromogranin A * blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasm Metastasis MeSH
- MicroRNAs * genetics blood MeSH
- Biomarkers, Tumor blood MeSH
- Prostatic Neoplasms, Castration-Resistant * blood genetics pathology drug therapy diagnosis MeSH
- Treatment Failure MeSH
- Prognosis MeSH
- Prostate-Specific Antigen * blood MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Blood Platelets * metabolism MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
Chemoresistance represents a major issue affecting cancer therapy efficacy. Because microRNAs (miRNAs) regulate gene expression on multiple levels, their role in chemoresistance development is reasonably certain. In our previous study, miR-122-5p and miR-142-5p were identified as diagnostic, prognostic, and predictive biomarkers for primary and metastatic rectal cancer. The aim of the present study was to investigate whether these miRNAs can also reflect the disease course of patients with colon cancer (CC). Further, we focused on a deeper understanding of their involvement in 5-fluorouracil (5-FU) chemoresistance development.
- MeSH
- Drug Resistance, Neoplasm * genetics MeSH
- Fluorouracil * therapeutic use pharmacology MeSH
- Middle Aged MeSH
- Humans MeSH
- MicroRNAs * genetics blood MeSH
- Biomarkers, Tumor genetics blood MeSH
- Colonic Neoplasms * genetics drug therapy blood pathology MeSH
- Prognosis MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The diagnostic performance of molecular markers in surrogate tissues like stool may be affected by colorectal cancer (CRC) morphological heterogeneity. The mucinous histotype represents a subgroup of CRC with a peculiar molecular program and unfavorable disease progression. However, the percentage of mucinous morphology necessary to define this subtype is still a matter of debate. In this study, we investigated whether stool miRNA profiles of CRC patients differ in patients with mucinous histopathological subtypes compared to non-mucinous cancers. In this respect, we also explored how the stool miRNA signature reported in our previous multicentric study behaves in this histotype. Small-RNA sequencing was performed in fecal and tissue samples of an Italian cohort (n = 172), including 27 CRC with mucinous morphology (mucinous cancers with ≥ 50% mucinous morphology and those with mucinous component ≥ 5% but < 50%), 58 non-mucinous CRC, and 87 colonoscopy-negative controls. Results were compared with fecal miRNA profiles of a cohort from the Czech Republic (n = 98). Most of the differentially expressed (DE) stool miRNAs (n = 324) were in common between CRC with mucinous morphology and non-mucinous histopathological subtypes in comparison with healthy controls. Interestingly, the altered levels of 25 fecal miRNAs previously identified distinguishing CRC cases from controls in both cohorts were also confirmed after stratification for mucinous morphology. Forty-nine miRNAs were DE exclusively in CRC with mucinous morphology and 61 in non-mucinous CRC. Mucinous cancers and those with mucinous component showed fairly similar profiles that were comparable in the Czech cohort. Among the stool DE miRNAs observed in CRC with mucinous morphology, 20 were also altered in the comparison between tumor and adjacent mucosa tissue. This study highlights miRNAs specifically altered in CRC with mucinous morphology. Nevertheless, the performance of our stool miRNA signature in accurately distinguishing CRC cases from controls was not significantly affected by this histological subtype. This aspect further supports the use of stool miRNAs for noninvasive diagnosis and screening strategies.
- MeSH
- Feces * chemistry MeSH
- Cohort Studies MeSH
- Colorectal Neoplasms * genetics pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- MicroRNAs * genetics metabolism MeSH
- Adenocarcinoma, Mucinous * genetics pathology MeSH
- Biomarkers, Tumor genetics MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Aged MeSH
- Gene Expression Profiling methods MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Early detection of colorectal cancer (CRC) significantly improves its management and patients' survival. Circular RNAs (circRNAs) are peculiar covalently closed transcripts involved in gene expression modulation whose dysregulation has been extensively reported in CRC cells. However, little is known about their alterations in the early phases of colorectal carcinogenesis. METHODS: In this study, we performed an integrative analysis of circRNA profiles in RNA-sequencing (RNA-Seq) data of 96 colorectal cancers, 27 adenomas, and matched adjacent mucosa tissues. We also investigated the levels of cognate linear transcripts and those of regulating RNA-binding proteins (RBPs). Levels of circRNA-interacting microRNAs (miRNAs) were explored by integrating data of small RNA-Seq performed on the same samples. RESULTS: Our results revealed a significant dysregulation of 34 circRNAs (paired adj. p < 0.05), almost exclusively downregulated in tumor tissues and, prevalently, in early disease stages. This downregulation was associated with decreased expression of circRNA host genes and those encoding for RBPs involved in circRNA biogenesis, including NOVA1, RBMS3, and MBNL1. Guilt-by-association analysis showed that dysregulated circRNAs correlated with increased predicted activity of cell proliferation, DNA repair, and c-Myc signaling pathways. Functional analysis showed interactions among dysregulated circRNAs, RBPs, and miRNAs, which were supported by significant correlations among their expression levels. Findings were validated in independent cohorts and public datasets, and the downregulation of circLPAR1(2,3) and circLINC00632(5) was validated by ddPCR. CONCLUSIONS: These results support that multiple altered regulatory mechanisms may contribute to the reduction of circRNA levels that characterize early colorectal carcinogenesis.
- Publication type
- Journal Article MeSH