multi-sensor
Dotaz
Zobrazit nápovědu
In this paper, we describe a technical design of wearable multi-sensor systems for physiological data measurement and wide medical applications, significantly impacted in telehealth. The monitors are composed of three analog front-end (AFE) devices, which assist with interfacing digital electronics to the noise-, time-sensitive physiological sensors for measuring ECG (heart-rate monitor), RR (respiration-rate monitor), SRL (skin resistivity monitor). These three types of sensors can be used separately or together and allow to determine a number of parameters for the assessment of mental and physical condition. The system is designed based on requirements for demanding environments even outside the realm of medical applications, and in accordance with Health and Safety at Work directives (89/391/CE and Seveso-II 96/82/EC) for occupational hygiene, medical, rehabilitation, sports and fitness applications.
- MeSH
- automatizované zpracování dat metody přístrojové vybavení MeSH
- biomedicínské technologie metody přístrojové vybavení MeSH
- biomedicínský výzkum MeSH
- dechová frekvence MeSH
- duševní zdraví MeSH
- elektrokardiografie metody přístrojové vybavení MeSH
- lidé MeSH
- nositelná elektronika * klasifikace MeSH
- srdeční frekvence MeSH
- telemedicína metody přístrojové vybavení MeSH
- tělesná výkonnost MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Use of a multi-sensor approach can provide citizens with holistic insights into the air quality of their immediate surroundings and their personal exposure to urban stressors. Our work, as part of the ICARUS H2020 project, which included over 600 participants from seven European cities, discusses the data fusion and harmonization of a diverse set of multi-sensor data streams to provide a comprehensive and understandable report for participants. Harmonizing the data streams identified issues with the sensor devices and protocols, such as non-uniform timestamps, data gaps, difficult data retrieval from commercial devices, and coarse activity data logging. Our process of data fusion and harmonization allowed us to automate visualizations and reports, and consequently provide each participant with a detailed individualized report. Results showed that a key solution was to streamline the code and speed up the process, which necessitated certain compromises in visualizing the data. A thought-out process of data fusion and harmonization of a diverse set of multi-sensor data streams considerably improved the quality and quantity of distilled data that a research participant received. Though automation considerably accelerated the production of the reports, manual and structured double checks are strongly recommended.
- MeSH
- lidé MeSH
- ukládání a vyhledávání informací MeSH
- velkoměsta MeSH
- znečištění ovzduší * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- velkoměsta MeSH
Using low-cost portable air quality (AQ) monitoring devices is a growing trend in personal exposure studies, enabling a higher spatio-temporal resolution and identifying acute exposure to high concentrations. Comprehension of the results by participants is not guaranteed in exposure studies. However, information on personal exposure is multiplex, which calls for participant involvement in information design to maximise communication output and comprehension. This study describes and proposes a model of a user-centred design (UCD) approach for preparing a final report for participants involved in a multi-sensor personal exposure monitoring study performed in seven cities within the EU Horizon 2020 ICARUS project. Using a combination of human-centred design (HCD), human-information interaction (HII) and design thinking approaches, we iteratively included participants in the framing and design of the final report. User needs were mapped using a survey (n = 82), and feedback on the draft report was obtained from a focus group (n = 5). User requirements were assessed and validated using a post-campaign survey (n = 31). The UCD research was conducted amongst participants in Ljubljana, Slovenia, and the results report was distributed among the participating cities across Europe. The feedback made it clear that the final report was well-received and helped participants better understand the influence of individual behaviours on personal exposure to air pollution.
- MeSH
- látky znečišťující vzduch * analýza MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- velkoměsta MeSH
- vystavení vlivu životního prostředí analýza MeSH
- znečištění ovzduší * analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- velkoměsta MeSH
... low-cost sensors -- Introduction -- 4.2 Kinect validation for clinical usages -- 45 -- 4.3 Inertial sensor ... ... 57 -- 5.3 Vision sensor-based gait cycle segmentation 58 -- 5.4 Kinect in gait cycle segmentation 61 ... ... -- 5.5 Inertial sensor-based gait segmentation 62 -- 5.6 Electromyography sensor-based gait segmentation ... ... A low-cost electromyography (EMG) sensor-based gait activity analysis 101 -- 8.1 Introduction 101 -- ... ... 8.2 Description of lower leg muscles 101 -- 8.3 Specification of MyoWare electromyography sensor 102 ...
x, 179 stran : ilustrace, grafy, schémata, portréty
Surface plasmon resonance (SPR) biosensors are affinity sensing devices exploiting a special mode of electromagnetic field-surface plasmon-polariton-to detect the binding of analyte molecules from a liquid sample to biomolecular recognition elements immobilized on the surface of the sensor. In this paper, we review advances of SPR biosensor technology towards detection systems for the simultaneous detection of multiple analytes (multi-analyte detection). In addition, we report application of a recently developed multichannel SPR sensor based on spectroscopy of surface plasmons and wavelength division multiplexing of sensing channels to multi-analyte detection.
The use of microwave technology is currently under investigation for non-invasive estimation of glycemia in patients with diabetes. Due to their construction, metamaterial (MTM)-based sensors have the potential to provide higher sensitivity of the phase shift of the S21 parameter (∠S21) to changes in glucose concentration compared to standard microstrip transmission line (MSTL)-based sensors. In this study, a MSTL sensor and three MTM sensors with 5, 7, and 9 MTM unit cells are exposed to liquid phantoms with different dielectric properties mimicking a change in blood glucose concentration from 0 to 14 mmol/L. Numerical models were created for the individual experiments, and the calculated S-parameters show good agreement with experimental results, expressed by the maximum relative error of 8.89% and 0.96% at a frequency of 1.99 GHz for MSTL and MTM sensor with nine unit cells, respectively. MTM sensors with an increasing number of cells show higher sensitivity of 0.62° per mmol/L and unit cell to blood glucose concentration as measured by changes in ∠S21. In accordance with the numerical simulations, the MTM sensor with nine unit cells showed the highest sensitivity of the sensors proposed by us, with an average of 3.66° per mmol/L at a frequency of 1.99 GHz, compared to only 0.48° per mmol/L for the MSTL sensor. The multi-cell MTM sensor has the potential to proceed with evaluation of human blood samples.
- MeSH
- krevní glukóza * MeSH
- lidé MeSH
- mikrovlny MeSH
- monitorování fyziologických funkcí MeSH
- selfmonitoring glykemie * MeSH
- studie proveditelnosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A novel sensor based on a modification of glassy carbon electrode (GCE) with NH2-functionalized multi-walled carbon nano-tubes (NH2fMWCNTs) is reported and its applicability to the electrochemical sensing of Propafenone (PPF) demonstrated. The electrochemical catalytic activity was also utilized as a sensitive detection method for the investigation of the detailed redox mechanism of PFF using cyclic and and differential pulse voltammetry. The surface morphology of the sensor was investigated by SEM armed with EDX probe. Electrochemical impedance spectroscopy was employed as well to define the electron transfer capability of modified and bare electrodes. Key experimental and instrumental conditions related to electrochemical determination by cyclic, differential pulse, and square wave voltammetry, such as amount of modifier, pH, scan rate, accumulation time and potential were studied and optimized. The results have shown a significant enhancement of the peak current after modifying the electrode; the calibration curves of PPF offering good linearity from 0.1 to 10 μM, limit of quantification (LOQ) being 0.03 μM and limit of detection (LOD) 0.01 μM, both when using DPV technique. The proposed sensor was successfully applied to the determination of PFF in dosage form without any special purification, separation or pre-treatment steps. The results of analyses obtained with the proposed sensor were satisfactory and fully statistically relevant.
- MeSH
- antiarytmika MeSH
- elektrody MeSH
- farmaceutická technologie přístrojové vybavení metody MeSH
- impedanční spektroskopie MeSH
- kalibrace MeSH
- koncentrace vodíkových iontů MeSH
- kyslík chemie MeSH
- lékové formy * MeSH
- limita detekce MeSH
- mikroskopie elektronová rastrovací MeSH
- nanomedicína MeSH
- nanotrubičky uhlíkové chemie MeSH
- propafenon aplikace a dávkování MeSH
- uhlík chemie MeSH
- Publikační typ
- časopisecké články MeSH
Diabetes mellitus can be considered one of the most widespread diseases globally. Hence, the diabetes research is currently focused on developing an effective, low-cost sensor having high stability and suitable analytical characteristics. Screen printed carbon electrodes (SPCEs) embody ideal candidates for insulin determination due to the small area of the working electrode eliminating the solution volume required for the given purpose. Modification of SPCEs by using nanoparticles resulted in an increase of the working electrode surface area and formation of a higher number of active species. The aim of this paper is to examine the impact of a chitosan membrane on the electrochemical determination of insulin on NiO nanoparticles (NiONPs) and multi-walled nanotube (MWCNTs) modified SPCE (NiONPs/MWCNTs/SPCE). This study is primarily conceived to compare the analytical characteristics and stability of NiONPs/chitosan-MWCNTs/SPCE and NiONPs/MWCNTs/SPCE. An electrode modified with chitosan displays a wider linear range, one of 0.25 μM - 5 μM (R2 0.997); a lower limit of detection, 94 nM; a high sensitivity (0.021 μA/μM) and better stability than that of an electrode without chitosan. According to these characteristics, the polymer is considered a necessary compound of the electrochemical insulin sensor, improving the sensor's analytical characteristics.
- MeSH
- biosenzitivní techniky přístrojové vybavení MeSH
- chitosan chemie MeSH
- elektrochemické techniky přístrojové vybavení MeSH
- elektrody MeSH
- inzulin analýza MeSH
- lidé MeSH
- limita detekce MeSH
- membrány umělé * MeSH
- nanočástice chemie MeSH
- nanotrubičky uhlíkové chemie MeSH
- nikl chemie MeSH
- rekombinantní proteiny analýza MeSH
- uhlík chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Histidine-containing phosphotransfer proteins from Arabidopsis thaliana (AHP1-5) act as intermediates between sensor histidine kinases and response regulators in a signalling system called multi-step phosphorelay (MSP). AHP proteins mediate and potentially integrate various MSP-based signalling pathways (e.g. cytokinin or osmosensing). However, structural information about AHP proteins and their importance in MSP signalling is still lacking. To obtain a deeper insight into the structural basis of AHP-mediated signal transduction, the three-dimensional structure of AHP2 was determined. The AHP2 coding sequence was cloned into pRSET B expression vector, enabling production of AHP2 fused to an N-terminal His tag. AHP2 was expressed in soluble form in Escherichia coli strain BL21 (DE3) pLysS and then purified to homogeneity using metal chelate affinity chromatography and anion-exchange chromatography under reducing conditions. Successful crystallization in a buffer which was optimized for thermal stability yielded crystals that diffracted to 2.5 Å resolution.
- MeSH
- Arabidopsis metabolismus MeSH
- difrakce rentgenového záření MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- fosfotransferasy chemie izolace a purifikace MeSH
- krystalizace MeSH
- proteiny huseníčku chemie izolace a purifikace MeSH
- signální transdukce * MeSH
- tranzitní teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH