Most cited article - PubMed ID 23428396
Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites
Photosynthetic organisms harvest light for energy. Some eukaryotic algae have specialized in harvesting far-red light by tuning chlorophyll a absorption through a mechanism still to be elucidated. Here, we combined optically detected magnetic resonance and pulsed electron paramagnetic resonance measurements on red-adapted light-harvesting complexes, rVCP, isolated from the freshwater eustigmatophyte alga Trachydiscus minutus to identify the location of the pigments responsible for this remarkable adaptation. The pigments have been found to belong to an excitonic cluster of chlorophylls a at the core of the complex, close to the central carotenoids in L1/L2 sites. A pair of structural features of the Chl a403/a603 binding site, namely the histidine-to-asparagine substitution in the magnesium-ligation residue and the small size of the amino acid at the i-4 position, resulting in a [A/G]xxxN motif, are proposed to be the origin of this trait. Phylogenetic analysis of various eukaryotic red antennae identified several potential LHCs that could share this tuning mechanism. This knowledge of the red light acclimation mechanism in algae is a step towards rational design of algal strains in order to enhance light capture and efficiency in large-scale biotechnology applications.
- MeSH
- Chlorophyll A * metabolism chemistry MeSH
- Chlorophyll metabolism MeSH
- Electron Spin Resonance Spectroscopy MeSH
- Phylogeny MeSH
- Light MeSH
- Light-Harvesting Protein Complexes * metabolism genetics chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll A * MeSH
- Chlorophyll MeSH
- Light-Harvesting Protein Complexes * MeSH
Antenna proteins play a major role in the regulation of light-harvesting in photosynthesis. However, less is known about a possible link between their sizes (oligomerization state) and fluorescence intensity (number of photons emitted). Here, we used a microscopy-based method, Fluorescence Correlation Spectroscopy (FCS), to analyze different antenna proteins at the particle level. The direct comparison indicated that Chromera Light Harvesting (CLH) antenna particles (isolated from Chromera velia) behaved as the monomeric Light Harvesting Complex II (LHCII) (from higher plants), in terms of their radius (based on the diffusion time) and fluorescence yields. FCS data thus indicated a monomeric oligomerization state of algal CLH antenna (at our experimental conditions) that was later confirmed also by biochemical experiments. Additionally, our data provide a proof of concept that the FCS method is well suited to measure proteins sizes (oligomerization state) and fluorescence intensities (photon counts) of antenna proteins per single particle (monomers and oligomers). We proved that antenna monomers (CLH and LHCIIm) are more "quenched" than the corresponding trimers. The FCS measurement thus represents a useful experimental approach that allows studying the role of antenna oligomerization in the mechanism of photoprotection.
- Keywords
- Chromera velia, antenna proteins, fluorescence correlation spectroscopy, light-harvesting, microscopy, photosynthesis, protein diffusion, protein oligomerization,
- MeSH
- Algal Proteins chemistry metabolism MeSH
- Fluorescence * MeSH
- Spectrometry, Fluorescence MeSH
- Photosynthesis * MeSH
- Kinetics MeSH
- Protein Multimerization MeSH
- Protein Transport MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Algal Proteins MeSH
Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment-pigment and pigment-protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.
- Keywords
- Chromatic acclimation, Eustigmatophyta, Light-harvesting protein, Oligomeric LHC, Red-shifted LHC, Violaxanthin,
- MeSH
- Pigments, Biological metabolism MeSH
- Diuron MeSH
- Spectrometry, Fluorescence MeSH
- Stramenopiles metabolism radiation effects MeSH
- Membrane Proteins metabolism MeSH
- Fresh Water * MeSH
- Light * MeSH
- Light-Harvesting Protein Complexes metabolism MeSH
- Temperature MeSH
- Thylakoids metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Pigments, Biological MeSH
- Diuron MeSH
- Membrane Proteins MeSH
- Light-Harvesting Protein Complexes MeSH
Photoprotective non-photochemical quenching (NPQ) represents an effective way to dissipate the light energy absorbed in excess by most phototrophs. It is often claimed that NPQ formation/relaxation kinetics are determined by xanthophyll composition. We, however, found that, for the alveolate alga Chromera velia, this is not the case. In the present paper, we investigated the reasons for the constitutive high rate of quenching displayed by the alga by comparing its light harvesting strategies with those of a model phototroph, the land plant Spinacia oleracea. Experimental results and in silico studies support the idea that fast quenching is due not to xanthophylls, but to intrinsic properties of the Chromera light harvesting complex (CLH) protein, related to amino acid composition and protein folding. The pKa for CLH quenching was shifted by 0.5 units to a higher pH compared with higher plant antennas (light harvesting complex II; LHCII). We conclude that, whilst higher plant LHCIIs are better suited for light harvesting, CLHs are 'natural quenchers' ready to switch into a dissipative state. We propose that organisms with antenna proteins intrinsically more sensitive to protons, such as C. velia, carry a relatively high concentration of violaxanthin to improve their light harvesting. In contrast, higher plants need less violaxanthin per chlorophyll because LHCII proteins are more efficient light harvesters and instead require co-factors such as zeaxanthin and PsbS to accelerate and enhance quenching.
- MeSH
- Alveolata physiology MeSH
- Algal Proteins metabolism MeSH
- Photosynthesis * MeSH
- Protons * MeSH
- Protozoan Proteins metabolism MeSH
- Plant Proteins metabolism MeSH
- Spinacia oleracea physiology MeSH
- Light-Harvesting Protein Complexes metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Algal Proteins MeSH
- Protons * MeSH
- Protozoan Proteins MeSH
- Plant Proteins MeSH
- Light-Harvesting Protein Complexes MeSH
We have used time-resolved absorption and fluorescence spectroscopy with nanosecond resolution to study triplet energy transfer from chlorophylls to carotenoids in a protective process that prevents the formation of reactive singlet oxygen. The light-harvesting complexes studied were isolated from Chromera velia, belonging to a group Alveolata, and Xanthonema debile and Nannochloropsis oceanica, both from Stramenopiles. All three light-harvesting complexes are related to fucoxanthin-chlorophyll protein, but contain only chlorophyll a and no chlorophyll c. In addition, they differ in the carotenoid content. This composition of the complexes allowed us to study the quenching of chlorophyll a triplet states by different carotenoids in a comparable environment. The triplet states of chlorophylls bound to the light-harvesting complexes were quenched by carotenoids with an efficiency close to 100%. Carotenoid triplet states were observed to rise with a ~5 ns lifetime and were spectrally and kinetically homogeneous. The triplet states were formed predominantly on the red-most chlorophylls and were quenched by carotenoids which were further identified or at least spectrally characterized.
- Keywords
- Algae, Energy transfer, Light harvesting, Photoprotection, Photosynthesis, Transient spectroscopy,
- MeSH
- Anaerobiosis MeSH
- Time Factors MeSH
- Chlorophyll metabolism MeSH
- Spectrometry, Fluorescence MeSH
- Photochemical Processes * MeSH
- Stramenopiles metabolism MeSH
- Carotenoids metabolism MeSH
- Kinetics MeSH
- Chlorophyll Binding Proteins metabolism MeSH
- Light-Harvesting Protein Complexes metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll MeSH
- Carotenoids MeSH
- Chlorophyll Binding Proteins MeSH
- Light-Harvesting Protein Complexes MeSH
It has previously been shown that the long-term treatment of Arabidopsis thaliana with the chloroplast inhibitor lincomycin leads to photosynthetic membranes enriched in antennas, strongly reduced in photosystem II reaction centers (PSII) and with enhanced nonphotochemical quenching (NPQ) (Belgio et al. Biophys J 102:2761-2771, 2012). Here, a similar physiological response was found in the microalga Chromera velia grown under high light (HL). In comparison to cells acclimated to low light, HL cells displayed a severe re-organization of the photosynthetic membrane characterized by (1) a reduction of PSII but similar antenna content; (2) partial uncoupling of antennas from PSII; (3) enhanced NPQ. The decrease in the number of PSII represents a rather unusual acclimation response compared to other phototrophs, where a smaller PSII antenna size is more commonly found under high light. Despite the diminished PSII content, no net damage could be detected on the basis of the Photosynthesis versus irradiance curve and electron transport rates pointing at the excess capacity of PSII. We therefore concluded that the photoinhibition is minimized under high light by a lower PSII content and that cells are protected by NPQ in the antennas.
- Keywords
- Chromera velia alga, High light acclimation, Nonphotochemical quenching, Photoinhibition, Uncoupling of antennas from Photosystem II.,
- MeSH
- Acclimatization radiation effects MeSH
- Alveolata cytology physiology radiation effects MeSH
- Chlorophyll A MeSH
- Chlorophyll metabolism MeSH
- Fluorescence MeSH
- Photochemical Processes radiation effects MeSH
- Photosynthesis radiation effects MeSH
- Photosystem II Protein Complex metabolism MeSH
- Solubility MeSH
- Light * MeSH
- Light-Harvesting Protein Complexes metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll A MeSH
- Chlorophyll MeSH
- Photosystem II Protein Complex MeSH
- Light-Harvesting Protein Complexes MeSH
In oxygenic photosynthesis the initial photochemical processes are carried out by photosystem I (PSI) and II (PSII). Although subunit composition varies between cyanobacterial and plastid photosystems, the core structures of PSI and PSII are conserved throughout photosynthetic eukaryotes. So far, the photosynthetic complexes have been characterised in only a small number of organisms. We performed in silico and biochemical studies to explore the organization and evolution of the photosynthetic apparatus in the chromerids Chromera velia and Vitrella brassicaformis, autotrophic relatives of apicomplexans. We catalogued the presence and location of genes coding for conserved subunits of the photosystems as well as cytochrome b6f and ATP synthase in chromerids and other phototrophs and performed a phylogenetic analysis. We then characterised the photosynthetic complexes of Chromera and Vitrella using 2D gels combined with mass-spectrometry and further analysed the purified Chromera PSI. Our data suggest that the photosynthetic apparatus of chromerids underwent unique structural changes. Both photosystems (as well as cytochrome b6f and ATP synthase) lost several canonical subunits, while PSI gained one superoxide dismutase (Vitrella) or two superoxide dismutases and several unknown proteins (Chromera) as new regular subunits. We discuss these results in light of the extraordinarily efficient photosynthetic processes described in Chromera.
- MeSH
- Alveolata genetics physiology MeSH
- Gene Deletion MeSH
- Photosynthesis genetics physiology MeSH
- Photosystem I Protein Complex genetics isolation & purification physiology MeSH
- Phylogeny MeSH
- Mass Spectrometry MeSH
- Evolution, Molecular MeSH
- Superoxide Dismutase metabolism MeSH
- Thylakoids metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Photosystem I Protein Complex MeSH
- Superoxide Dismutase MeSH
Diatoms greatly contribute to carbon fixation and thus strongly influence the global biogeochemical balance. Capable of chromatic acclimation (CA) to unfavourable light conditions, diatoms often dominate benthic ecosystems in addition to their planktonic lifestyle. Although CA has been studied at the molecular level, our understanding of this phenomenon remains incomplete. Here we provide new data to better explain the acclimation-associated changes under red-enhanced ambient light (RL) in diatom Phaeodactylum tricornutum, known to express a red-shifted antenna complex (F710). The complex was found to be an oligomer of a single polypeptide, Lhcf15. The steady-state spectroscopic properties of the oligomer were also studied. The oligomeric assembly of the Lhcf15 subunits is required for the complex to exhibit a red-shifted absorption. The presence of the red antenna in RL culture coincides with the development of a rounded phenotype of the diatom cell. A model summarizing the modulation of the photosynthetic apparatus during the acclimation response to light of different spectral quality is proposed. Our study suggests that toggling between alternative organizations of photosynthetic apparatus and distinct cell morphologies underlies the remarkable acclimation capacity of diatoms.
- MeSH
- Phenotype * MeSH
- Adaptation, Physiological MeSH
- Protein Multimerization MeSH
- Diatoms physiology radiation effects MeSH
- Spectrum Analysis MeSH
- Light-Harvesting Protein Complexes metabolism MeSH
- Aquatic Organisms physiology radiation effects MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Light-Harvesting Protein Complexes MeSH
Photosystem I (PSI) is a multi-subunit integral pigment-protein complex that performs light-driven electron transfer from plastocyanin to ferredoxin in the thylakoid membrane of oxygenic photoautotrophs. In order to achieve the optimal photosynthetic performance under ambient irradiance, the absorption cross section of PSI is extended by means of peripheral antenna complexes. In eukaryotes, this role is played mostly by the pigment-protein complexes of the LHC family. The structure of the PSI-antenna supercomplexes has been relatively well understood in organisms harboring the primary plastid: red algae, green algae and plants. The secondary endosymbiotic algae, despite their major ecological importance, have so far received less attention. Here we report a detailed structural analysis of the antenna-PSI association in the stramenopile alga Nannochloropsis oceanica (Eustigmatophyceae). Several types of PSI-antenna assemblies are identified allowing for identification of antenna docking sites on the PSI core. Instances of departure of the stramenopile system from the red algal model of PSI-Lhcr structure are recorded, and evolutionary implications of these observations are discussed.
- Keywords
- Electron microscopy, Light-harvesting complex, Nannochloropsis, Photosystem I, Stramenopila,
- MeSH
- Photosystem I Protein Complex metabolism MeSH
- Plastids metabolism MeSH
- Rhodophyta metabolism MeSH
- Spectrophotometry, Ultraviolet MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Photosystem I Protein Complex MeSH
We present proteomic, spectroscopic, and phylogenetic analysis of light-harvesting protein (Lhc) function in oleaginous Nannochloropsis oceanica (Eustigmatophyta, Stramenopila). N. oceanica utilizes Lhcs of multiple classes: Lhcr-type proteins (related to red algae LHCI), Lhcv (VCP) proteins (violaxanthin-containing Lhcs related to Lhcf/FCP proteins of diatoms), Lhcx proteins (related to Lhcx/LhcSR of diatoms and green algae), and Lhc proteins related to Red-CLH of Chromera velia. Altogether, 17 Lhc-type proteins of the 21 known from genomic data were found in our proteomic analyses. Besides Lhcr-type antennas, a RedCAP protein and a member of the Lhcx protein subfamily were found in association with Photosystem I. The free antenna fraction is formed by trimers of a mixture of Lhcs of varied origins (Lhcv, Lhcr, Lhcx, and relatives of Red-CLH). Despite possessing several proteins of the Red-CLH-type Lhc clade, N. oceanica is not capable of chromatic adaptation under the same conditions as the diatom Phaeodactylum tricornutum or C. velia. In addition, a naming scheme of Nannochloropsis Lhcs is proposed to facilitate further work.
- Keywords
- Light harvesting, Thylakoid membrane, Vaucheriaxanthin, Violaxanthin–chlorophyll protein,
- MeSH
- Photosystem I Protein Complex metabolism MeSH
- Phylogeny MeSH
- Stramenopiles genetics metabolism MeSH
- Spectrophotometry, Ultraviolet MeSH
- Light-Harvesting Protein Complexes chemistry genetics metabolism MeSH
- Tandem Mass Spectrometry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Photosystem I Protein Complex MeSH
- Light-Harvesting Protein Complexes MeSH