vertical inheritance
Dotaz
Zobrazit nápovědu
Gut microbial communities are complex and heterogeneous and play critical roles for animal hosts. Early-life disruptions to microbiome establishment can negatively impact host fitness and development. However, the consequences of such early-life disruptions remain unknown in wild birds. To help fill this gap, we investigated the effect of continuous early-life gut microbiome disruptions on the establishment and development of gut communities in wild Great tit (Parus major) and Blue tit (Cyanistes caeruleus) nestlings by applying antibiotics and probiotics. Treatment neither affected nestling growth nor their gut microbiome composition. Independent of treatment, nestling gut microbiomes of both species grouped by brood, which shared the highest numbers of bacterial taxa with both nest environment and their mother. Although fathers showed different gut communities than their nestlings and nests, they still contributed to structuring chick microbiomes. Lastly, we observed that the distance between nests increased inter-brood microbiome dissimilarity, but only in Great tits, indicating that species-specific foraging behaviour and/or microhabitat influence gut microbiomes. Overall, the strong maternal effect, driven by continuous recolonization from the nest environment and vertical transfer of microbes during feeding, appears to provide resilience towards early-life disruptions in nestling gut microbiomes.
- Klíčová slova
- antibiotics, brood feeding, environmental microbiomes, probiotics, vertical transmission,
- MeSH
- kur domácí MeSH
- maternální dědičnost MeSH
- mikrobiota * MeSH
- Passeriformes * mikrobiologie MeSH
- střevní mikroflóra * MeSH
- zpěvní ptáci * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Termites host diverse communities of gut microbes, including many bacterial lineages only found in this habitat. The bacteria endemic to termite guts are transmitted via two routes: a vertical route from parent colonies to daughter colonies and a horizontal route between colonies sometimes belonging to different termite species. The relative importance of both transmission routes in shaping the gut microbiota of termites remains unknown. Using bacterial marker genes derived from the gut metagenomes of 197 termites and one Cryptocercus cockroach, we show that bacteria endemic to termite guts are mostly transferred vertically. We identified 18 lineages of gut bacteria showing cophylogenetic patterns with termites over tens of millions of years. Horizontal transfer rates estimated for 16 bacterial lineages were within the range of those estimated for 15 mitochondrial genes, suggesting that horizontal transfers are uncommon and vertical transfers are the dominant transmission route in these lineages. Some of these associations probably date back more than 150 million years and are an order of magnitude older than the cophylogenetic patterns between mammalian hosts and their gut bacteria. Our results suggest that termites have cospeciated with their gut bacteria since first appearing in the geological record.
- Klíčová slova
- cophylogeny, endosymbionts, isoptera, metagenomics, vertical inheritance,
- MeSH
- Bacteria genetika MeSH
- fylogeneze MeSH
- Isoptera * MeSH
- savci MeSH
- střevní mikroflóra * MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Within streptophyte green algae Zygnematophyceae are the sister group to the land plants that inherited several traits conferring stress protection. Zygnema sp., a mat-forming alga thriving in extreme habitats, was collected from a field site in Svalbard, where the bottom layers are protected by the top layers. The two layers were investigated by a metatranscriptomic approach and GC-MS-based metabolite profiling. In the top layer, 6569 genes were significantly upregulated and 149 were downregulated. Upregulated genes coded for components of the photosynthetic apparatus, chlorophyll synthesis, early light-inducible proteins, cell wall and carbohydrate metabolism, including starch-degrading enzymes. An increase in maltose in the top layer and degraded starch grains at the ultrastructural levels corroborated these findings. Genes involved in amino acid, redox metabolism and DNA repair were upregulated. A total of 29 differentially accumulated metabolites (out of 173 identified ones) confirmed higher metabolic turnover in the top layer. For several of these metabolites, differential accumulation matched the transcriptional changes of enzymes involved in associated pathways. In summary, the findings support the hypothesis that in a Zygnema mat the top layer shields the bottom layers from abiotic stress factors such as excessive irradiation.
- MeSH
- Chlorophyta genetika metabolismus MeSH
- ekosystém MeSH
- fotosyntéza genetika MeSH
- fyziologický stres MeSH
- metabolom MeSH
- Streptophyta genetika metabolismus MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Arktida MeSH
- Svalbard MeSH
BACKGROUND: Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS: We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS: Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.
- Klíčová slova
- Endosymbionts, Isoptera, Metagenomics, Vertical inheritance,
- MeSH
- fylogeneze MeSH
- Isoptera * MeSH
- metagenom MeSH
- půda MeSH
- střevní mikroflóra * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda MeSH
Endosymbiosis-where a microbe lives and replicates within a host-is an important contributor to organismal function that has accelerated evolutionary innovations and catalyzed the evolution of complex life. The evolutionary processes associated with transitions to endosymbiosis, however, are poorly understood. Here, we leverage the wide diversity of host-associated lifestyles of the genus Arsenophonus to reveal the complex evolutionary processes that occur during the transition to a vertically transmitted endosymbiotic lifestyle from strains maintained solely by horizontal (infectious) transmission. We compared the genomes of 38 strains spanning diverse lifestyles from horizontally transmitted pathogens to obligate interdependent endosymbionts. Among culturable strains, we observed those with vertical transmission had larger genome sizes than closely related horizontally transmitting counterparts, consistent with evolutionary innovation and the rapid gain of new functions. Increased genome size was a consequence of prophage and plasmid acquisition, including a cargo of type III effectors, alongside the concomitant loss of CRISPR-Cas genome defense systems, enabling mobile genetic element expansion. Persistent endosymbiosis was also associated with loss of type VI secretion, which we hypothesize to be a consequence of reduced microbe-microbe competition. Thereafter, the transition to endosymbiosis with strict vertical inheritance was associated with the expected relaxation of purifying selection, gene pseudogenization, metabolic degradation, and genome reduction. We argue that reduced phage predation in endosymbiotic niches drives the loss of genome defense systems driving rapid genome expansion upon the adoption of endosymbiosis and vertical transmission. This remodeling enables rapid horizontal gene transfer-mediated evolutionary innovation and precedes the reductive evolution traditionally associated with adaptation to endosymbiosis.
- Klíčová slova
- Arsenophonus, CRISPR-Cas defense, Endosymbiosis, genome evolution, genome expansion, mobile genetic elements, prophages, vertical transmission,
- MeSH
- biologická evoluce MeSH
- Enterobacteriaceae genetika fyziologie MeSH
- genom bakteriální * MeSH
- molekulární evoluce MeSH
- přenos genů horizontální MeSH
- symbióza * genetika MeSH
- Publikační typ
- časopisecké články MeSH
Hallgren syndrome is a hereditary disease with autosomal recessive inheritance. Its exact genetic background has not been elucidated so far. From the clinical aspect is comprises association of retinitis pigmentosa, atrophy of the optic nerve, nystagmus and congenital hearing damage combined with neurological and psychiatric symptoms. The authors describe two siblings with the clinical picture of this syndrome. It is a finding not published so far in the Czech literature.
- MeSH
- dítě MeSH
- hluchota vrozené MeSH
- lidé MeSH
- nemoci zrakového nervu * MeSH
- patologický nystagmus * MeSH
- předškolní dítě MeSH
- retinopathia pigmentosa * MeSH
- syndrom MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- Publikační typ
- anglický abstrakt MeSH
- časopisecké články MeSH
- kazuistiky MeSH
The stability of endosymbiotic associations between eukaryotes and bacteria depends on a reliable mechanism ensuring vertical inheritance of the latter. Here, we demonstrate that a host-encoded protein, located at the interface between the endoplasmic reticulum of the trypanosomatid Novymonas esmeraldas and its endosymbiotic bacterium Ca. Pandoraea novymonadis, regulates such a process. This protein, named TMP18e, is a product of duplication and neo-functionalization of the ubiquitous transmembrane protein 18 (TMEM18). Its expression level is increased at the proliferative stage of the host life cycle correlating with the confinement of bacteria to the nuclear vicinity. This is important for the proper segregation of bacteria into the daughter host cells as evidenced from the TMP18e ablation, which disrupts the nucleus-endosymbiont association and leads to greater variability of bacterial cell numbers, including an elevated proportion of aposymbiotic cells. Thus, we conclude that TMP18e is necessary for the reliable vertical inheritance of endosymbionts.
- Klíčová slova
- Leishmaniinae, Pandoraea, TMEM18, Trypanosomatidae, endosymbiosis,
- MeSH
- Bacteria MeSH
- Eukaryota MeSH
- symbióza fyziologie MeSH
- Trypanosomatina * mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Niemann-Pick disease type C (NPC) is a rare, fatal neurovisceral disorder with autosomal recessive inheritance, and featuring striking clinical variability dependent on the age at onset of neurological symptoms. We report data from a large cohort of 56 Czech patients with NPC diagnosed over a period of 37 years. METHODS: An observational, retrospective analysis of historic and current clinical and laboratory information was performed among all NPC patients originating from the area of the contemporary Czech Republic and diagnosed between 1975 and 2012. All patients with ≥1 positive diagnostic test and relevant clinical information were included. Data on diagnostic methods (histopathological and/or ultrastructural; biochemical; genetic), clinical status and general information on treatment were collated. Data were examined in accordance with international guidelines for the management of NPC. RESULTS: Between 1975 and 1985 diagnoses were based exclusively on specific histopathological findings, often at autopsy. Bone marrow smear (BMS) analyses have proved to be a very specific indicator for NPC and have become an important part of our diagnostic algorithm. Filipin staining and cholesterol esterification assays became the definitive diagnostic tests after 1985 and were applied in 24 of our patients. Since 2005, more and more patients have been assessed using NPC1/NPC2 gene sequencing. Twelve patients were diagnosed with neonatal/early-infantile onset NPC, 13 with the late-infantile onset form, 20 with the juvenile onset form, and nine with the adolescent/adult onset form. Two diagnosed patients remained neurologically asymptomatic at study completion. Nineteen patients were siblings. Causal NPC1 mutations were determined in 38 patients; two identical NPC2 mutations were identified in one patient. In total, 30 different mutations were identified, 14 of which have been confirmed as novel. The frequency of individual mutated NPC1 alleles in our cohort differs compared with previous published data: the most frequent mutant NPC1 allele was p.R1186H (n = 13), followed by p.P1007A (n = 8), p.S954L (n = 8) and p.I1061T (n = 4). CONCLUSIONS: These data demonstrate the evolution of the diagnostic process in NPC over the last four decades. We estimate the contemporary birth prevalence of NPC in the Czech Republic at 0.93 per 100,000.
- MeSH
- lidé MeSH
- Niemannova-Pickova nemoc typu C diagnóza epidemiologie patofyziologie MeSH
- retrospektivní studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- MeSH
- amblyopie epidemiologie MeSH
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- poranění oka epidemiologie MeSH
- poruchy barevného vidění epidemiologie MeSH
- refrakční vady epidemiologie MeSH
- strabismus epidemiologie MeSH
- věkové faktory MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Československo MeSH
BACKGROUND: Phylogenetically closely related strains of maternally inherited endosymbiotic bacteria are often found in phylogenetically divergent, and geographically distant insect host species. The interspecies transfer of the symbiont Wolbachia has been thought to have occurred repeatedly, facilitating its observed global pandemic. Few ecological interactions have been proposed as potential routes for the horizontal transfer of Wolbachia within natural insect communities. These routes are however likely to act only at the local scale, but how they may support the global distribution of some Wolbachia strains remains unclear. RESULTS: Here, we characterize the Wolbachia diversity in butterflies from the tropical forest regions of central Africa to discuss transfer at both local and global scales. We show that numerous species from both the Mylothris (family Pieridae) and Bicyclus (family Nymphalidae) butterfly genera are infected with similar Wolbachia strains, despite only minor interclade contacts across the life cycles of the species within their partially overlapping ecological niches. The phylogenetic distance and differences in resource use between these genera rule out the role of ancestry, hybridization, and shared host-plants in the interspecies transfer of the symbiont. Furthermore, we could not identify any shared ecological factors to explain the presence of the strains in other arthropod species from other habitats, or even ecoregions. CONCLUSION: Only the systematic surveys of the Wolbachia strains from entire species communities may offer the material currently lacking for understanding how Wolbachia may transfer between highly different and unrelated hosts, as well as across environmental scales.
- Klíčová slova
- Horizontal transfer, Interspecific interactions, Lepidoptera, Phylogeny, Symbiosis, Vertical transmission,
- MeSH
- biodiverzita MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- Lepidoptera genetika fyziologie MeSH
- přenos genů horizontální * MeSH
- symbióza * MeSH
- Wolbachia genetika fyziologie MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH