Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
CZ.02.1.01/0.0/0.0/17_048/0007323
ERDF
PubMed
30558142
PubMed Central
PMC6321018
DOI
10.3390/ijms19124045
PII: ijms19124045
Knihovny.cz E-resources
- Keywords
- antioxidant, antioxidant enzymes, antisenescent, cytokinin, derivative, genes, photosynthesis, plant defence, structure and activity relationship,
- MeSH
- Antioxidants chemistry metabolism MeSH
- Cytokinins chemistry metabolism MeSH
- Flavonoids analysis MeSH
- Photosynthesis MeSH
- Plant Leaves chemistry growth & development physiology MeSH
- Molecular Structure MeSH
- Plants chemistry MeSH
- Plant Development MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Antioxidants MeSH
- Cytokinins MeSH
- Flavonoids MeSH
Cytokinins modulate a number of important developmental processes, including the last phase of leaf development, known as senescence, which is associated with chlorophyll breakdown, photosynthetic apparatus disintegration and oxidative damage. There is ample evidence that cytokinins can slow down all these senescence-accompanying changes. Here, we review relationships between the various mechanisms of action of these regulatory molecules. We highlight their connection to photosynthesis, the pivotal process that generates assimilates, however may also lead to oxidative damage. Thus, we also focus on cytokinin induction of protective responses against oxidative damage. Activation of antioxidative enzymes in senescing tissues is described as well as changes in the levels of naturally occurring antioxidative compounds, such as phenolic acids and flavonoids, in plant explants. The main goal of this review is to show how the biological activities of cytokinins may be related to their chemical structure. New links between molecular aspects of natural cytokinins and their synthetic derivatives with antisenescent properties are described. Structural motifs in cytokinin molecules that may explain why these molecules play such a significant regulatory role are outlined.
See more in PubMed
Davies P.J. In: Plant Hormones. Davies P.J., editor. Springer; Dordrecht, The Netherlands: 2010.
Strnad M. The aromatic cytokinins. Physiol. Plant. 1997;101:674–688. doi: 10.1111/j.1399-3054.1997.tb01052.x. DOI
Plíhalová L., Vylíčilová H., Doležal K., Zahajská L., Zatloukal M., Strnad M. Synthesis of aromatic cytokinins for plant biotechnology. New Biotechnol. 2016;33:614–624. doi: 10.1016/j.nbt.2015.11.009. PubMed DOI
Mok D.W.S., Mok M.C. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001;52:89–118. doi: 10.1146/annurev.arplant.52.1.89. PubMed DOI
Van Staden J. Cytokinins and senescence. Senescence Aging Plants. 1988:281–328. doi: 10.1016/B978-0-12-520920-5.50015-8. DOI
Gan S., Amasino R.M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science. 1995;270:1986–1988. doi: 10.1126/science.270.5244.1986. PubMed DOI
Rivero R.M., Kojima M., Gepstein A., Sakakibara H., Mittler R., Gepstein S., Blumwald E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. USA. 2007;104:19631–19636. doi: 10.1073/pnas.0709453104. PubMed DOI PMC
Koprna R., de Diego N., Dundálková L., Spíchal L. Use of cytokinins as agrochemicals. Bioorg. Med. Chem. 2016;24:484–492. doi: 10.1016/j.bmc.2015.12.022. PubMed DOI
Koyama T. A hidden link between leaf development and senescence. Plant Sci. 2018;276:105–110. doi: 10.1016/j.plantsci.2018.08.006. PubMed DOI
Toscano S., Trivellini A., Ferrante A., Romano D. Physiological mechanisms for delaying the leaf yellowing of potted geranium plants. Sci. Hortic. 2018;242:146–154. doi: 10.1016/j.scienta.2018.07.030. DOI
Kulaeva O.N. The influence of roots on leaf metabolism in relation to kinetin action. Sov. Plant Physiol. 1962;9:229–239.
Brizzolari A., Marinello C., Carini M., Santaniello E., Biondi P.A. Evaluation of the antioxidant activity and capacity of some natural N6-substituted adenine derivatives (cytokinins) by fluorimetric and spectrophotometric assays. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016;1019:164–168. doi: 10.1016/j.jchromb.2015.12.047. PubMed DOI
Vanacker H. Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. J. Exp. Bot. 2006;57:1735–1745. doi: 10.1093/jxb/erl012. PubMed DOI
Pilarska M., Skowron E., Pietraś R., Krupinska K., Niewiadomska E. Changes in lipid peroxidation in stay-green leaves of tobacco with senescence-induced synthesis of cytokinins. Plant Physiol. Biochem. 2017;118:161–167. doi: 10.1016/j.plaphy.2017.06.018. PubMed DOI
Zimmermann P., Heinlein C., Orendi G., Zentgraf U. Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant, Cell Environ. 2006;29:1049–1060. doi: 10.1111/j.1365-3040.2005.01459.x. PubMed DOI
Richmond A.E., Lang A. Effect of kinetin on protein content and survival of detached Xanthium leaves. Science. 1957;125:650–651. doi: 10.1126/science.125.3249.650-a. PubMed DOI
Dyer T.A., Osborne D.J. Leaf nucleic acids. J. Exp. Bot. 1971;22:552–560. doi: 10.1093/jxb/22.3.552. DOI
Kamínek M., Luštinec J. Sensitivity of oat leaf chlorophyll retention bioassay to natural and synthetic cytokinins. Biol. Plant. 1978;20:377–382. doi: 10.1007/BF02923332. DOI
Holub J., Hanuš J., Hanke D.E., Strnad M. Biological activity of cytokinins derived from Ortho- and Meta-hydroxybenzyladenine. Plant Growth Regul. 1998;26:109–115. doi: 10.1023/A:1006192619432. DOI
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P.I., Galuszka P., Klíma P., Gaudinová A., Žižková E., et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI
Mik V., Szüčová L., Spíchal L., Plíhal O., Nisler J., Zahajská L., Doležal K., Strnad M. N9-Substituted N6-[(3-methylbut-2-en-1-yl)amino]purine derivatives and their biological activity in selected cytokinin bioassays. Bioorg. Med. Chem. 2011;19:7244–7251. doi: 10.1016/j.bmc.2011.09.052. PubMed DOI
Spíchal L., Rakova N.Y., Riefler M., Mizuno T., Romanov G.A., Strnad M., Schmülling T. Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 2004;45:1299–1305. doi: 10.1093/pcp/pch132. PubMed DOI
Kim H.J., Ryu H., Hong S.H., Woo H.R., Lim P.O., Lee I.C., Sheen J., Nam H.G., Hwang I. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2006;103:814–819. doi: 10.1073/pnas.0505150103. PubMed DOI PMC
Doležal K., Popa I., Kryštof V., Spíchal L., Fojtíková M., Holub J., Lenobel R., Schmülling T., Strnad M. Preparation and biological activity of 6-benzylaminopurine derivatives in plants and human cancer cells. Bioorganic Med. Chem. 2006;14:875–884. doi: 10.1016/j.bmc.2005.09.004. PubMed DOI
Gan S., Amasino R. Cytokinins in plant senescence: From spray and pray to clone and play. BioEssays. 1996;18:557–565. doi: 10.1002/bies.950180707. DOI
Noodén L.D., Singh S., Letham D.S. Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol. 1990;93:33–39. doi: 10.1104/pp.93.1.33. PubMed DOI PMC
Singh S., Letham D.S., Palni L.M.S. Cytokinin biochemistry in relation to leaf senescence. VII. Endogenous cytokinin levels and exogenous applications of cytokinins in relation to sequential leaf senescence of tobacco. Physiol. Plant. 1992;86:388–397. doi: 10.1111/j.1399-3054.1992.tb01334.x. DOI
Podlešáková K., Zalabák D., Čudejková M., Plíhal O., Szüčová L., Doležal K., Spíchal L., Strnad M., Galuszka P. Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. PLoS ONE. 2012;7:e39293. doi: 10.1371/journal.pone.0039293. PubMed DOI PMC
Dhindsa R.S., Plumb-Dhindsa P.L., Reid D.M. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol. Plant. 1982;56:453–457. doi: 10.1111/j.1399-3054.1982.tb04539.x. DOI
Del Río L.A., Pastori G.M., Palma J.M., Sandalio L.M., Sevilla F., Corpas F.J., Jiménez A., López-Huertas E., Hernández J.A. The activated oxygen role of peroxisomes in senescence. Plant Physiol. 1998;116:1195–1200. doi: 10.1104/pp.116.4.1195. PubMed DOI PMC
Jiao D., Ji B., Li X. Characteristics of chlorophyll fluorescence and membrane-lipid peroxidation during senescence of flag leaf in different cultivars of rice. Photosynthetica. 2003;41:33–41. doi: 10.1023/A:1025848110029. DOI
Cabello P., Agüera E., de la Haba P. Metabolic changes during natural ageing in sunflower (Helianthus annuus) leaves: Expression and activity of glutamine synthetase isoforms are regulated differently during senescence. Physiol. Plant. 2006;128:175–185. doi: 10.1111/j.1399-3054.2006.00722.x. DOI
Jajić I., Sarna T., Szewczyk G., Strzałka K. Changes in production of reactive oxygen species in illuminated thylakoids isolated during development and senescence of barley. J. Plant Physiol. 2015;184:49–56. doi: 10.1016/j.jplph.2015.06.009. PubMed DOI
Mik V., Szüčová L., Šmehilová M., Zatloukal M., Doležal K., Nisler J., Grúz J., Galuszka P., Strnad M., Spíchal L. N9-substituted derivatives of kinetin: Effective anti-senescence agents. Phytochemistry. 2011;72:821–831. doi: 10.1016/j.phytochem.2011.02.002. PubMed DOI
Zavaleta-Mancera H.A., López-Delgado H., Loza-Tavera H., Mora-Herrera M., Trevilla-García C., Vargas-Suárez M., Ougham H. Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J. Plant Physiol. 2007;164:1572–1582. doi: 10.1016/j.jplph.2007.02.003. PubMed DOI
Novák J., Pavlů J., Novák O., Nožková-Hlaváčková V., Špundová M., Hlavinka J., Koukalová Š., Skalák J., Černý M., Brzobohatý B. High cytokinin levels induce a hypersensitive-like response in tobacco. Ann. Bot. 2013;112:41–55. doi: 10.1093/aob/mct092. PubMed DOI PMC
Zhang R., David L.S. Cytokinin biochemistry in relation to leaf senescence. III. The senescence-retarding activity and metabolism of 9-substituted 6-benzylaminopurines in soybean leaves. J. Plant Growth Regul. 1989;8:181–197. doi: 10.1007/BF02308087. DOI
Corse J., Pacovsky R.S., Lyman M.L., Brandon D.L. Biological activity of several 9-nonglycosidic-substituted natural cytokinins. J. Plant Growth Regul. 1989;8:211–223. doi: 10.1007/BF02308090. DOI
Szüčová L., Spíchal L., Doležal K., Zatloukal M., Greplová J., Galuszka P., Kryštof V., Voller J., Popa I., Massino F.J., et al. Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives. Bioorganic Med. Chem. 2009;17:1938–1947. doi: 10.1016/j.bmc.2009.01.041. PubMed DOI
Szüčová L., Zatloukal M., Spíchal L., Fröhlich L., Doležal K., Strnad M., Massino F. 6,9-Disubstituted Purine Derivatives and their Use for Treating Skin. Patent EP 2043630. 2016 May 10
Szüčová L., Zatloukal M., Spíchal L., Voller J., Doležal K., Strnad M., Massino F.J. 6,9-Disubstituted Purine Derivatives and Their Use as Cosmetics and Cosmetic Compositions. Patent US7960397. 2011 Jun 14
Zatloukal M., Gemrotová M., Doležal K., Havlíček L., Spíchal L., Strnad M. Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg. Med. Chem. 2008;16:9268–9275. doi: 10.1016/j.bmc.2008.09.008. PubMed DOI
Doležal K., Popa I., Hauserová E., Spíchal L., Chakrabarty K., Novák O., Kryštof V., Voller J., Holub J., Strnad M. Preparation, biological activity and endogenous occurrence of N6-benzyladenosines. Bioorg. Med. Chem. 2007;15:3737–3747. doi: 10.1016/j.bmc.2007.03.038. PubMed DOI
Vylíčilová H., Husičková A., Spíchal L., Srovnal J., Doležal K., Plíhal O., Plíhalová L. C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. Phytochemistry. 2016;122:22–33. doi: 10.1016/j.phytochem.2015.12.001. PubMed DOI
Hönig M., Plíhalová L., Spíchal L., Grúz J., Kadlecová A., Voller J., Svobodová A.R., Vostálová J., Ulrichová J., Doležal K., Strnad M. New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. Eur. J. Med. Chem. 2018;150:946–957. doi: 10.1016/j.ejmech.2018.03.043. PubMed DOI
Bråthe A., Andresen G., Gundersen L.L., Malterud K.E., Rise F. Antioxidant activity of synthetic cytokinin analogues: 6-Alkynyl- and 6-alkenylpurines as novel 15-lipoxygenase inhibitors. Bioorg. Med. Chem. 2002;10:1581–1586. doi: 10.1016/S0968-0896(01)00427-8. PubMed DOI
Zahajská L., Nisler J., Voller J., Gucký T., Pospíšil T., Spíchal L., Strnad M. Preparation, characterization and biological activity of C8-substituted cytokinins. Phytochemistry. 2017;135:115–127. doi: 10.1016/j.phytochem.2016.12.005. PubMed DOI
Skoog F., Hamzi H.Q., Szweykowska A.M., Leonard N.J., Carraway K.L., Fujii T., Helgeson J.P., Loeppky R.N. Cytokinins: Structure/activity relationships. Phytochemistry. 1967;6:1169–1192. doi: 10.1016/S0031-9422(00)86080-X. DOI
Nisler J., Zatloukal M., Sobotka R., Pilný J., Zdvihalová B., Novák O., Strnad M., Spíchal L. New urea derivatives are effective anti-senescence compounds acting most likely via a cytokinin-independent mechanism. Front. Plant Sci. 2018;9:1–17. doi: 10.3389/fpls.2018.01225. PubMed DOI PMC
Mok M.C., Mok D.W.S., Armstrong D.J., Shudo K., Isogai Y., Okamoto T. Cytokinin activity of N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (thidiazuron) Phytochemistry. 1982;21:1509–1511. doi: 10.1016/S0031-9422(82)85007-3. DOI
Thomas J.C., Katterman F.R. Cytokinin activity induced by thidiazuron. Plant Physiol. 1986;81:681–683. doi: 10.1104/pp.81.2.681. PubMed DOI PMC
Ferrante A., Hunter D.A., Hackett W.P., Reid M.S. Thidiazuron—A potent inhibitor of leaf senescence in Alstroemeria. Postharvest Biol. Technol. 2002;25:333–338. doi: 10.1016/S0925-5214(01)00195-8. DOI
Ferrante A., Tognoni F., Mensuali-Sodi A., Serra G. Treatment with thidiazuron for preventing leaf yellowing in cut tulips and Chrysanthemum. Acta Hortic. 2003:357–363. doi: 10.17660/ActaHortic.2003.624.49. DOI
Mutui T., Mibus H., Serek M. Effects of thidiazuron, ethylene, abscisic acid and dark storage on leaf yellowing and rooting of Pelargonium cuttings. J. Hortic. Sci. Biotechnol. 2005;80:543–550. doi: 10.1080/14620316.2005.11511975. DOI
Nisler J. TDZ: Mode of Action, Use and Potential in Agriculture. In: Ahmad N., Faisal M., editors. Thidiazuron: From Urea Derivative to Plant Growth Regulator. Springer; Singapore: 2018. pp. 37–59.
Whitty C.D., Hall R.H. A Cytokinin Oxidase in Zea mays. Can. J. Biochem. 1974;52:789–799. doi: 10.1139/o74-112. PubMed DOI
Brownlee B.G., Hall R.H., Whitty C.D. 3-Methyl-2-butenal: An Enzymatic Degradation Product of the Cytokinin, N6-(Δ2-Isopentenyl)adenine. Can. J. Biochem. 1975;53:37–41. doi: 10.1139/o75-006. PubMed DOI
Chatfield J.M., Armstrong D.J. Regulation of cytokinin oxidase activity in callus tissues of Phaseolus vulgaris L. cv great northern. Plant Physiol. 1986;80:493–499. doi: 10.1104/pp.80.2.493. PubMed DOI PMC
Kopečný D., Briozzo P., Popelková H., Šebela M., Končitíková R., Spíchal L., Nisler J., Madzak C., Frébort I., Laloue M., Houba-Hérin N. Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: A structural study. Biochimie. 2010;92:1052–1062. doi: 10.1016/j.biochi.2010.05.006. PubMed DOI
Nisler J., Kopečný D., Končitíková R., Zatloukal M., Bazgier V., Berka K., Zalabák D., Briozzo P., Strnad M., Spíchal L. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. Plant Mol. Biol. 2016;92:235–248. doi: 10.1007/s11103-016-0509-0. PubMed DOI
Ferrante A., Vernieri P., Serra G., Tognoni F. Changes in abscisic acid during leaf yellowing of cut stock flowers. Plant Growth Regul. 2004;43:127–134. doi: 10.1023/B:GROW.0000040119.27627.b2. DOI
Mayak S., Halevy A.H. Interrelationships of Ethylene and abscisic acid in the control of rose petal senescence. Plant Physiol. 1972;50:341–346. doi: 10.1104/pp.50.3.341. PubMed DOI PMC
Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 2010;61:651–679. doi: 10.1146/annurev-arplant-042809-112122. PubMed DOI
Mutui T.M., Mibus H., Serek M. Influence of thidiazuron, ethylene, abscisic acid and dark storage on the expression levels of ethylene receptors (ETR) and ACC synthase (ACS) genes in Pelargonium. Plant Growth Regul. 2007;53:87–96. doi: 10.1007/s10725-007-9206-y. DOI
Abeles F.B., Dunn L.J., Morgens P., Callahan A., Dinterman R.E., Schmidt J. Induction of 33-kD and 60-kD peroxidases during ethylene-induced senescence of cucumber cotyledons. Plant Physiol. 1988;87:609–615. doi: 10.1104/pp.87.3.609. PubMed DOI PMC
Reid M.S. Ethylene in plant growth, development, and senescence. In: Davies P.J., editor. Plant Hormones. Springer; Dordrecht, The Netherlands: 1995. pp. 486–508.
Hatami M., Hatamzadeh A., Ghasemnezhad M., Sajedi R.H. Antioxidant enzymatic protection during pelargonium plant leaf senescence is mediated by thidiazuron. Trakia J. Sci. 2013;11:152–157.
Kaur P., Singh K. Influence of growth regulators on physiology and senescence of cut stemsof Chrysanthemum (Chrysanthemum morifolium Ramat) Var. thai ching queen. IJAPPR. 2015;2:31–41.
Aremu A.O., Bairu M.W., Szüčová L., Doležal K., Finnie J.F., van Staden J. Assessment of the role of meta-topolins on in vitro produced phenolics and acclimatization competence of micropropagated “Williams” banana. Acta Physiol. Plant. 2012;34:2265–2273. doi: 10.1007/s11738-012-1027-6. PubMed DOI
Aremu A.O., Gruz J., Šubrtová M., Szüčová L., Doležal K., Bairu M.W., Finnie J.F., van Staden J. Antioxidant and phenolic acid profiles of tissue cultured and acclimatized Merwilla plumbea plantlets in relation to the applied cytokinins. J. Plant Physiol. 2013;170:1303–1308. doi: 10.1016/j.jplph.2013.04.008. PubMed DOI
Pietta P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000;63:1035–1042. doi: 10.1021/np9904509. PubMed DOI
Shang X., He X., He X., Li M., Zhang R., Fan P., Zhang Q., Jia Z. The genus Scutellaria an ethnopharmacological and phytochemical review. J. Ethnopharmacol. 2010;128:279–313. doi: 10.1016/j.jep.2010.01.006. PubMed DOI
Alipieva K., Korkina L., Orhan I.E., Georgiev M.I. Verbascoside—A review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol. Adv. 2014;32:1065–1076. doi: 10.1016/j.biotechadv.2014.07.001. PubMed DOI
Grzegorczyk-Karolak I., Rytczak P., Bielecki S., Wysokińska H. The influence of liquid systems for shoot multiplication, secondary metabolite production and plant regeneration of Scutellaria alpina. Plant Cell Tissue Organ Cult. 2017;128:479–486. doi: 10.1007/s11240-016-1126-y. DOI
Grzegorczyk-Karolak I., Kuźma Ł., Wysokińska H. The effect of cytokinins on shoot proliferation, secondary metabolite production and antioxidant potential in shoot cultures of Scutellaria alpina. Plant Cell Tissue Organ Cult. 2015;122:699–708. doi: 10.1007/s11240-015-0804-5. DOI
Grzegorczyk-Karolak I., Kuźma Ł., Wysokińska H. Study on the chemical composition and antioxidant activity of extracts from shoot culture and regenerated plants of Scutellaria altissima L. Acta Physiol. Plant. 2015;37:1–9. doi: 10.1007/s11738-014-1736-0. DOI
Aremu A.O., Stirk W.A., Masondo N.A., Plačková L., Novák O., Pěnčík A., Zatloukal M., Nisler J., Spíchal L., Doležal K., et al. Dissecting the role of two cytokinin analogues (INCYDE and PI-55) on in vitro organogenesis, phytohormone accumulation, phytochemical content and antioxidant activity. Plant Sci. 2015;238:81–94. doi: 10.1016/j.plantsci.2015.05.018. PubMed DOI
Grúz J., Spíchal L. International PSE Symposium on Phytochemicals in Nutrition and Health. BARI; Giovinazzo, Italy: 2011. Application of purine derivative LGR-1814 improves func- tional properties of field-grown lettuce (Lactuca sativa) p. 30.
Coste A., Vlase L., Halmagyi A., Deliu C., Coldea G. Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tissue Organ Cult. 2011;106:279–288. doi: 10.1007/s11240-011-9919-5. DOI
Kirakosyan A., Gibson D.M., Kaufman P.B. The production of dianthrones and phloroglucinol derivatives in St. John’s Wort. In: Ramawat K., Merillon J., editors. Bioactive Molecules and Medicinal Plants. Springer; Berlin/Heidelberg, Germany: 2008. pp. 149–164.
Petrova M., Nikolova M., Zayova E. Micropropagation and evaluation of flavonoid content and antioxidant activity of salvia. Genet. Plant Physiol. 2015;5:48–60.
De Moura F.B., Vieira M.R.D.S., Simoes A.D.N., Ferreira-Silva S.L., de Souza C.A., de Souza E.S., da Rocha A.T., da Silva L.F., Miguel A. Physiological effect of kinetin on the photosynthetic apparatus and antioxidant enzymes activities during production of anthurium. Hortic. Plant J. 2018;4:182–192. doi: 10.1016/j.hpj.2018.04.001. DOI
Zhang D., Xu X., Zhang Z., Jiang G., Feng L., Duan X., Jiang Y. 6-Benzylaminopurine improves the quality of harvested litchi fruit. Postharvest Biol. Technol. 2018;143:137–142. doi: 10.1016/j.postharvbio.2018.05.002. DOI
Wu X., Zhu Z., Li X., Zha D. Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena L.) under salinity stress. Acta Physiol. Plant. 2012;34:2105–2114. doi: 10.1007/s11738-012-1010-2. DOI
Yang D.Q., Luo Y.L., Dong W.H., Yin Y.P., Li Y., Wang Z.L. Response of photosystem II performance and antioxidant enzyme activities in stay-green wheat to cytokinin. Photosynthetica. 2018;56:567–577. doi: 10.1007/s11099-017-0708-1. DOI
Liu X., Huang B., Banowetz G. Cytokinin effects on creeping bentgrass responses to heat stress: I. Shoot and root growth. Crop Sci. 2002;42:457–465. doi: 10.2135/cropsci2002.4570. DOI
Ren B., Zhang J., Dong S., Liu P., Zhao B. Exogenous 6-benzyladenine improves antioxidative system and carbon metabolism of summer maize waterlogged in the field. J. Agron. Crop Sci. 2018;204:175–184. doi: 10.1111/jac.12253. DOI
Hung K.T., Kao C.H. Involvement of lipid peroxidation in water stress-promoted senescence of detached rice leaves. Plant Growth Regul. 1998;24:17–21. doi: 10.1023/A:1005988727235. DOI
Xu Y., Huang B. Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Sci. 2009;49:1876. doi: 10.2135/cropsci2008.07.0441. DOI
Todorov D., Alexieva V., Karanov E. Effect of putrescine, 4-PU-30, and abscisic acid on maize plants grown under normal, drought, and rewatering conditions. J. Plant Growth Regul. 1998;17:197–203. doi: 10.1007/PL00007035. PubMed DOI
Ogweno J.O., Hu W.H., Song X.S., Shi K., Mao W.H., Zhou Y.H., Yu J.Q. Photoinhibition-induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. Plant Growth Regul. 2010;60:175–182. doi: 10.1007/s10725-009-9439-z. DOI
Ahanger M.A., Alyemeni M.N., Wijaya L., Alamri S.A., Alam P., Ashraf M., Ahmad P. Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS ONE. 2018;13:e0202175. doi: 10.1371/journal.pone.0202175. PubMed DOI PMC
Zwack P.J., Rashotte A.M. Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 2015;66:4863–4871. doi: 10.1093/jxb/erv172. PubMed DOI
Jameson P.E. Encyclopedia of Applied Plant Sciences. Volume 1. Elsevier; Amsterdam, The Netherlands: 2017. Cytokinins; pp. 391–402.
Spallek T., Melnyk C.W., Wakatake T., Zhang J., Sakamoto Y., Kiba T., Yoshida S., Matsunaga S., Sakakibara H., Shirasu K. Interspecies hormonal control of host root morphology by parasitic plants. Proc. Natl. Acad. Sci. USA. 2017;114:5283–5288. doi: 10.1073/pnas.1619078114. PubMed DOI PMC
Sardesai N., Lee L., Chen H., Yi H., Olbricht G.R., Stirnberg A., Jeffries J., Xiong K., Doerge R.W., Gelvin S.B. Cytokinins secreted by Agrobacterium promote transformation by repressing a plant myb transcription factor. Sci. Signal. 2013;6 doi: 10.1126/scisignal.2004518. PubMed DOI
Spallek T., Gan P., Kadota Y., Shirasu K. Same tune, different song—Cytokinins as virulence factors in plant–pathogen interactions? Curr. Opin. Plant Biol. 2018;44:82–87. doi: 10.1016/j.pbi.2018.03.002. PubMed DOI
Savory E.A., Fuller S.L., Weisberg A.J., Thomas W.J., Gordon M.I., Stevens D.M., Creason A.L., Belcher M.S., Serdani M., Wiseman M.S., et al. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. Elife. 2017;6:1–28. doi: 10.7554/eLife.30925. PubMed DOI PMC
Stirk W.A., van Staden J. Flow of cytokinins through the environment. Plant Growth Regul. 2010;62:101–116. doi: 10.1007/s10725-010-9481-x. DOI
Hinsch J., Galuszka P., Tudzynski P. Functional characterization of the first filamentous fungal tRNA-isopentenyltransferase and its role in the virulence of Claviceps purpurea. New Phytol. 2016;211:980–992. doi: 10.1111/nph.13960. PubMed DOI
Choi J., Huh S.U., Kojima M., Sakakibara H., Paek K.H., Hwang I. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev. Cell. 2010;19:284–295. doi: 10.1016/j.devcel.2010.07.011. PubMed DOI
Naseem M., Dandekar T. The role of auxin-cytokinin antagonism in plant-pathogen interactions. PLoS Pathog. 2012;8:e1003026. doi: 10.1371/journal.ppat.1003026. PubMed DOI PMC
Walters D.R., McRoberts N. Plants and biotrophs: A pivotal role for cytokinins? Trends Plant Sci. 2006;11:581–586. doi: 10.1016/j.tplants.2006.10.003. PubMed DOI
Chernyad’ev I.I. Photosynthesis in sugar beet plants treated with benzyladenine and metribuzin during leaf ontogeny. Russ. J. Plant Physiol. 2000;47:161–167.
Chernyad’Ev I.I. Ontogenetic changes in the photosynthetic apparatus and effects of cytokinins (review) Appl. Biochem. Microbiol. 2000;36:527–528. doi: 10.1023/A:1026628119243. DOI
Stoynova E.Z., Iliev L.K., Georgiev G.T. Structural and functional alterations in radish plants induced by the phenylurea cytokinin 4-PU-30. Biol. Plant. 1996;38:237–244. doi: 10.1007/BF02873852. DOI
Tao G.-Q., Letham D.S., Yong J.W.H., Zhang K., John P.C.L., Schwartz O., Wong S.C., Farquhar G.D. Promotion of shoot development and tuberisation in potato by expression of a chimaeric cytokinin synthesis gene at normal and elevated CO2 levels. Funct. Plant Biol. 2010;37:43. doi: 10.1071/FP07032. DOI
Kulaeva O.N., Burkhanova E.A., Karavaiko N.N., Selivankina S.Y., Porfirova S.A., Maslova G.G., Zemlyachenko Y.V., Börner T. Chloroplasts affect the leaf response to cytokinin. J. Plant Physiol. 2002;159:1309–1316. doi: 10.1078/0176-1617-00761. DOI
Boasson R., Laetsch W.M. Chloroplast replication and growth in tobacco. Science. 1969;166:749–751. doi: 10.1126/science.166.3906.749. PubMed DOI
Harvey B.M.R., Lu B.C., Fletcher R.A. Benzyladenine accelerates chloroplast differentiation and stimulates photosynthetic enzyme activity in cucumber cotyledons. Can. J. Bot. 1974;52:2581–2586. doi: 10.1139/b74-334. DOI
Momotani E., Aoki K., Tsuji H. Effect of benzyladenine on diurnal changes in DNA content per chloroplast and chloroplast replication in intact bean leaves. J. Exp. Bot. 1991;42:1287–1293. doi: 10.1093/jxb/42.10.1287. DOI
Chory J., Reinecke D., Sim S., Washburn T., Brenner M. A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins) Plant Physiol. 1994;104:339–347. doi: 10.1104/pp.104.2.339. PubMed DOI PMC
Okazaki K., Kabeya Y., Suzuki K., Mori T., Ichikawa T., Matsui M., Nakanishi H., Miyagishima S. The plastid division 1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation. Plant Cell Online. 2009;21:1769–1780. doi: 10.1105/tpc.109.067785. PubMed DOI PMC
Sudriá C., Palazón J., Cusidó R., Bonfill M., Piñol M.T., Morales C. Effect of benzyladenine and indolebutyric acid on ultrastructure, glands formation, and essential oil accumulation in Lavandula dentata plantlets. Biol. Plant. 2001;44:1–6. doi: 10.1023/A:1017998800224. DOI
Kusnetsov V., Herrmann R.G., Kulaeva O.N., Oelmüller R. Cytokinin stimulates and abscisic acid inhibits greening of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidoreductase. Mol. Gen. Genet. 1998;259:21–28. doi: 10.1007/PL00008626. PubMed DOI
Kuroda H., Masuda T., Fusada N., Ohta H., Takamiya K.-I. Cytokinin–induced transcriptional activation of NADPH–protochlorophyllide oxidoreductase gene in cucumber. J. Plant Res. 2001;114:1–7. doi: 10.1007/PL00013963. DOI
Wilhelmova N., Kutik J. Influence of exogenously applied 6-benzylaminopurine on the structure of chloroplasts and arrangement of their membranes. Photosynthetica. 1995;31:559–570.
Zavaleta-Mancera H.A., Thomas B.J., Thomas H., Scott I.M. Regreening of senescent nicotiana leaves. II. Redifferentiation of plastids. J. Exp. Bot. 1999;50:1683–1689. doi: 10.1093/jxb/50.340.1683. DOI
Zavaleta-Mancera H.A., Franklin K.A., Ougham H.J., Thomas H., Scott I.M. Regreening of senescent Nicotiana leaves. I. Reappearance of NADPH-protochlorophyllide oxidoreductase and light-harvesting chlorophyll A/B-binding protein. J. Exp. Bot. 1999;50:1677–1682. doi: 10.1093/jxb/50.340.1677. DOI
Talla S.K., Panigrahy M., Kappara S., Nirosha P., Neelamraju S., Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J. Exp. Bot. 2016;67:1839–1851. doi: 10.1093/jxb/erv575. PubMed DOI PMC
Paramonova N.V., Krasavina M.S., Sokolova S.V. Ultrastructure of chloroplasts in phloem companion cells and mesophyll cells as related to the stimulation of sink activity by cytokinins. Russ. J. Plant Physiol. 2002;49:187–195. doi: 10.1023/A:1014893221505. DOI
Synková H., Schnablová R., Polanská L., Hušák M., Šiffel P., Vácha F., Malbeck J., Macháčková I., Nebesářová J. Three-dimensional reconstruction of anomalous chloroplasts in transgenic ipt tobacco. Planta. 2006;223:659–671. doi: 10.1007/s00425-005-0119-6. PubMed DOI
Vlckova A., Spundova M., Kotabova E., Novotny R., Dolezal K., Naus J. Protective cytokinin action switches to damaging during senescence of detached wheat leaves in continuous light. Physiol. Plant. 2006;126:257–267. doi: 10.1111/j.1399-3054.2006.00593.x. DOI
Criado M.V., Caputo C., Roberts I.N., Castro M.A., Barneix A.J. Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum) J. Plant Physiol. 2009;166:1775–1785. doi: 10.1016/j.jplph.2009.05.007. PubMed DOI
Cortleven A., Schmülling T. Regulation of chloroplast development and function by cytokinin. J. Exp. Bot. 2015;66:4999–5013. doi: 10.1093/jxb/erv132. PubMed DOI
Lerbs S., Lerbs W., Klyachko N.L., Romanko E.G., Kulaeva O.N., Wollgiehn R., Parthier B. Gene expression in cytokinin-and light-mediated plastogenesis of Cucurbita cotyledons: Ribulose-1,5-bisphosphate carboxylase/oxygenase. Planta. 1984;162:289–298. doi: 10.1007/BF00396739. PubMed DOI
Ohya T., Suzuki H. The effects of benzyladenine on the accumulation of messenger RNAs that encode the large and small subunits of ribulose-l,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll A/B protein in excised cucumber cotyledons. Plant Cell Physiol. 1991;32:577–580. doi: 10.1093/oxfordjournals.pcp.a078118. DOI
Benková E., Witters E., Van Dongen W., Kolar J., Motyka V., Brzobohatý B., van Onckelen H.A., Machácková I. Cytokinins in tobacco and wheat chloroplasts. occurrence and changes due to light/dark treatment. Plant Physiol. 1999;121:245–252. doi: 10.1104/pp.121.1.245. PubMed DOI PMC
Kasahara H., Takei K., Ueda N., Hishiyama S., Yamaya T., Kamiya Y., Yamaguchi S., Sakakibara H. Distinct isoprenoid origins of cis-and trans-zeatin biosyntheses in Arabidopsis. J. Biol. Chem. 2004;279:14049–14054. doi: 10.1074/jbc.M314195200. PubMed DOI
Polanska L., Vicankova A., Novakova M., Malbeck J., Dobrev P.I., Brzobohaty B., Vankova R., Machackova I. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. J. Exp. Bot. 2007;58:637–649. doi: 10.1093/jxb/erl235. PubMed DOI
Ananieva K., Malbeck J., Kaminek M., van Staden J. Changes in endogenous cytokinin levels in cotyledons of Cucurbita pepo (zucchini) during natural and dark-induced senescence. Physiol. Plant. 2004;122:133–142. doi: 10.1111/j.1399-3054.2004.00378.x. DOI
Ananieva K., Ananiev E.D., Doncheva S., Georgieva K., Tzvetkova N., Kamínek M., Motyka V., Dobrev P., Gajdošová S., Malbeck J. Senescence progression in a single darkened cotyledon depends on the light status of the other cotyledon in Cucurbita pepo (zucchini) seedlings: Potential involvement of cytokinins and cytokinin oxidase/dehydrogenase activity. Physiol. Plant. 2008;134:609–623. doi: 10.1111/j.1399-3054.2008.01161.x. PubMed DOI
Roberts I.N., Caputo C., Kade M., Criado M.V., Barneix A.J. Subtilisin-like serine proteases involved in N remobilization during grain filling in wheat. Acta Physiol. Plant. 2011;33:1997–2001. doi: 10.1007/s11738-011-0712-1. DOI
Janečková H., Husičková A., Ferretti U., Prčina M., Pilařová E., Plačková L., Pospíšil P., Doležal K., Špundová M. The interplay between cytokinins and light during senescence in detached Arabidopsis leaves. Plant. Cell Environ. 2018;41:1870–1885. doi: 10.1111/pce.13329. PubMed DOI
Wojciechowska N., Sobieszczuk-Nowicka E., Bagniewska-Zadworna A. Plant organ senescence—Regulation by manifold pathways. Plant Biol. 2018;20:167–181. doi: 10.1111/plb.12672. PubMed DOI
Weidhase R.A., Lehmann J., Kramell H., Sembdner G., Parthier B. Degradation of ribulose-1,5-bisphosphate carboxylase and chlorophyll in senescing barley leaf segments triggered by jasmonic acid methylester, and counteraction by cytokinin. Physiol. Plant. 1987;69:161–166. doi: 10.1111/j.1399-3054.1987.tb01961.x. DOI
Selivankina S.Y., Karavaiko N.N., Kuiper D., Novikova G.V., Kulaeva O.N. Cytokinin activity of zeatin allylic phosphate, a natural compound. Plant Growth Regul. 2001;33:157–164. doi: 10.1023/A:1017553023145. DOI
Liu X., Huang B. Cytokinin effects on creeping bentgrass response to heat stress. Crop Sci. 2002;42:466. doi: 10.2135/cropsci2002.4660. DOI
Hudák J., Vizárová G., Šikulová J., Ovečková O. Effect of cytokinins produced by strains of Agrobacterium tumefaciens with binary vectors on plastids in senescent barley leaves. Acta Physiol. Plant. 1996;18:205–210.
Catsky J., Pospisilova J., Kaminek M., Gaudinova A., Pulkrabek J., Zahradnicek J. Seasonal changes in sugar beet photosynthesis as affected by exogenous cytokinin N6-(m-hydroxybenzyl)adenosine. Biol. Plant. 1996;38:511–518. doi: 10.1007/BF02890598. DOI
Rivero R.M., Shulaev V., Blumwald E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol. 2009;150:1530–1540. doi: 10.1104/pp.109.139378. PubMed DOI PMC
Zhang Y., Liang C.Y., Xu Y., Gianfagna T., Huang B.R. Effects of Ipt gene expression on leaf senescence induced by nitrogen or phosphorus deficiency in creeping bentgrass. J. Am. Soc. Hortic. Sci. 2010;135:108–115.
Wang K., Zhang X., Ervin E. Effects of nitrate and cytokinin on creeping bentgrass under supraoptimal temperatures. J. Plant Nutr. 2013;36:1549–1564. doi: 10.1080/01904167.2013.799184. DOI
Weaver L.M., Gan S., Quirino B., Amasino R.M. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol. Biol. 1998;37:455–469. doi: 10.1023/A:1005934428906. PubMed DOI
Gepstein S., Sabehi G., Carp M.-J., Hajouj T., Nesher M.F.O., Yariv I., Dor C., Bassani M. Large-scale identification of leaf senescence-associated genes. Plant J. 2003;36:629–642. doi: 10.1046/j.1365-313X.2003.01908.x. PubMed DOI
Costa M.L., Civello P.M., Chaves A.R., Martínez G.A. Effect of ethephon and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked chlorophyll bleaching during post-harvest senescence of broccoli (Brassica oleracea L.) at 20 °C. Postharvest Biol. Technol. 2005;35:191–199. doi: 10.1016/j.postharvbio.2004.07.007. DOI
Sergiev I., Todorova D., Somleva M., Alexieva V., Karanov E., Stanoeva E., Lachkova V., Smith A., Hall M. Influence of cytokinins and novel cytokinin antagonists on the senescence of detached leaves of Arabidopsis thaliana. Biol. Plant. 2007;51:377–380. doi: 10.1007/s10535-007-0079-8. DOI
Büchert A.M., Civello P.M., Martínez G.A. Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. J. Plant Physiol. 2011;168:337–343. doi: 10.1016/j.jplph.2010.07.011. PubMed DOI
Kuderová A., Gallová L., Kuricová K., Nejedlá E., Čurdová A., Micenková L., Plíhal O., Šmajs D., Spíchal L., Hejátko J. Identification of AHK2- and AHK3-like cytokinin receptors in Brassica napus reveals two subfamilies of AHK2 orthologues. J. Exp. Bot. 2015;66:339–353. doi: 10.1093/jxb/eru422. PubMed DOI
Lomin S.N., Krivosheev D.M., Steklov M.Y., Arkhipov D.V., Osolodkin D.I., Schmülling T., Romanov G.A. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 2015;66:1851–1863. doi: 10.1093/jxb/eru522. PubMed DOI PMC
Lomin S.N., Myakushina Y.A., Kolachevskaya O.O., Getman I.A., Arkhipov D.V., Savelieva E.M., Osolodkin D.I., Romanov G.A. Cytokinin perception in potato: New features of canonical players. J. Exp. Bot. 2018;69:3839–3853. doi: 10.1093/jxb/ery199. PubMed DOI PMC
Halevy A.H., Dilley D.R., Wittwer S.H. Senescence inhibition and respiration induced by growth retardants and 6N-benzyladenine. Plant Physiol. 1966;41:1085–1089. doi: 10.1104/pp.41.7.1085. PubMed DOI PMC
Adedipe N.O., Fletcher R.A. Retardation of bean leaf senescence by benzyladenine and its influence on phosphate metabolism. Plant Physiol. 1970;46:614–617. doi: 10.1104/pp.46.4.614. PubMed DOI PMC
Prokopová J., Špundová M., Sedlářová M., Husičková A., Novotný R., Doležal K., Nauš J., Lebeda A. Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiol. Biochem. 2010;48:716–723. doi: 10.1016/j.plaphy.2010.04.003. PubMed DOI
Osborne D.J. Effect of kinetin on protein & nucleic acid metabolism in Xanthium leaves during senescence. Plant Physiol. 1962;37:595–602. doi: 10.1104/pp.37.5.595. PubMed DOI PMC
Von Abrams G.J., Pratt H.K. Interaction of naphthaleneacetic acid and kinetin in the senescence of detached leaves. Plant Physiol. 1966;41:1525–1530. doi: 10.1104/pp.41.9.1525. PubMed DOI PMC
Kasamo K. The role of the epidermis in kinetin-induced retardation of chlorophyll degradation in tobacco leaf discs during senescence. Plant Cell Physiol. 1976;17:1297–1307.
Zubo Y.O., Yamburenko M.V., Selivankina S.Y., Shakirova F.M., Avalbaev A.M., Kudryakova N.V., Zubkova N.K., Liere K., Kulaeva O.N., Kusnetsov V.V., et al. Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol. 2008;148:1082–1093. doi: 10.1104/pp.108.122275. PubMed DOI PMC
Buschmann C., Lichtenthaler H.K. The effect of cytokinins on growth and pigment accumulation of radish seedlings (Raphanus sativus L.) Grown in the dark and at different light quanta fluence rates. Photochem. Photobiol. 1982;35:217–221. doi: 10.1111/j.1751-1097.1982.tb03835.x. DOI
Keshishian E.A., Rashotte A.M. Plant cytokinin signalling. Essays Biochem. 2015;58:13–27. doi: 10.1042/bse0580013. PubMed DOI
Brenner W.G., Ramireddy E., Heyl A., Schmülling T. Gene regulation by cytokinin in Arabidopsis. Front. Plant Sci. 2012;3:1–22. doi: 10.3389/fpls.2012.00008. PubMed DOI PMC
Heyl A., Riefler M., Romanov G.A., Schmülling T. Properties, functions and evolution of cytokinin receptors. Eur. J. Cell Biol. 2012;91:246–256. doi: 10.1016/j.ejcb.2011.02.009. PubMed DOI
Inoue T., Higuchi M., Hashimoto Y., Seki M., Kobayashi M., Kato T., Tabata S., Shinozaki K., Kakimoto T. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature. 2001;409:1060–1063. doi: 10.1038/35059117. PubMed DOI
Brenner W.G., Schmulling T. Summarizing and exploring data of a decade of cytokinin-related transcriptomics. Front. Plant Sci. 2015;6:1–13. doi: 10.3389/fpls.2015.00029. PubMed DOI PMC
Brandstatter I., Kieber J.J. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell Online. 1998;10:1009–1020. doi: 10.1105/tpc.10.6.1009. PubMed DOI PMC
Hwang I., Sheen J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature. 2001;413:383–389. doi: 10.1038/35096500. PubMed DOI
Zwack P.J., Robinson B.R., Risley M.G., Rashotte A.M. Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses. Plant Cell Physiol. 2013;54:971–981. doi: 10.1093/pcp/pct049. PubMed DOI
Cortleven A., Nitschke S., Klaumunzer M., AbdElgawad H., Asard H., Grimm B., Riefler M., Schmulling T. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase 2 and Arabidopsis histidine kinase 3 receptors. Plant Physiol. 2014;164:1470–1483. doi: 10.1104/pp.113.224667. PubMed DOI PMC
Cortleven A., Valcke R. Evaluation of the photosynthetic activity in transgenic tobacco plants with altered endogenous cytokinin content: Lessons from cytokinin. Physiol. Plant. 2012;144:394–408. doi: 10.1111/j.1399-3054.2011.01558.x. PubMed DOI
Gan S., Amasino R.M. Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence) Plant Physiol. 1997;113:313–319. doi: 10.1104/pp.113.2.313. PubMed DOI PMC
Zwack P.J., Rashotte A.M. Cytokinin inhibition of leaf senescence. Plant Signal. Behav. 2013;8:e24737. doi: 10.4161/psb.24737. PubMed DOI PMC
Liu M.-S., Li H.-C., Lai Y.-M., Lo H.-F., Chen L.-F.O. Proteomics and transcriptomics of broccoli subjected to exogenously supplied and transgenic senescence-induced cytokinin for amelioration of postharvest yellowing. J. Proteom. 2013;93:133–144. doi: 10.1016/j.jprot.2013.05.014. PubMed DOI
Chang H., Jones M.L., Banowetz G.M., Clark D.G. Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol. 2003;132:2174–2183. doi: 10.1104/pp.103.023945. PubMed DOI PMC
Brady C.J. Nucleic acid and protein synthesis. In: Noodén L.D., editor. Senescence and Aging in Plants. Academic Press; San Diego, CA, USA: 1988. pp. 147–178.
Taylor C.B., Bariola P.A., DelCardayre S.B., Raines R.T., Green P.J. RNS2: A senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proc. Natl. Acad. Sci. USA. 1993;90:5118–5122. doi: 10.1073/pnas.90.11.5118. PubMed DOI PMC
Hensel L.L., Grbic V., Baumgarten V.A., Bleecker A.B. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell. 1993;5:553–564. doi: 10.1105/tpc.5.5.553. PubMed DOI PMC
Lohman K.N., Gan S., John M.C., Amasino R.M. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol. Plant. 1994;92:322–328. doi: 10.1111/j.1399-3054.1994.tb05343.x. DOI
Drake R., John I., Farrell A., Cooper W., Schuch W., Grierson D. Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant Mol. Biol. 1996;30:755–767. doi: 10.1007/BF00019009. PubMed DOI
Ryu S.B., Wang X. Expression of phospholipase D during castor bean leaf senescence. Plant Physiol. 1995;108:713–719. doi: 10.1104/pp.108.2.713. PubMed DOI PMC
Watanabe A., Hamada K., Yokoi H., Watanabe A. Biphasic and differential expression of cytosolic glutamine synthetase genes of radish during seed germination and senescence of cotyledons. Plant Mol. Biol. 1994;26:1807–1817. doi: 10.1007/BF00019494. PubMed DOI
Guo Y., Gan S.S. Translational researches on leaf senescence for enhancing plant productivity and quality. J. Exp. Bot. 2014;65:3901–3913. doi: 10.1093/jxb/eru248. PubMed DOI
Jordi W., Schapendonk A., Davelaar E., Stoopen G.M., Pot C.S., de Visser R., van Rhijn J.A., Gan S., Amasino R.M. Increased cytokinin levels in transgenic P(SAG12)-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ. 2000;23:279–289. doi: 10.1046/j.1365-3040.2000.00544.x. DOI
Lara M.E.B., Garcia M.-C.G., Fatima T., Ehneβ R., Lee T.K., Proels R., Tanner W., Roitsch T., Lara M.E.B., Garcia M.-C.G., et al. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell. 2004;16:1276–1287. doi: 10.1105/tpc.018929. PubMed DOI PMC
Synková H., Semorádová Š., Schnablová R., Witters E., Hušák M., Valcke R. Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-IPT tobacco during plant ontogeny. Biol. Plant. 2006;50:31–41. doi: 10.1007/s10535-005-0071-0. DOI
Dertinger U., Schaz U., Schulze E.D. Age-dependence of the antioxidative system in tobacco with enhanced glutathione reductase activity or senescence-induced production of cytokinins. Physiol. Plant. 2003;119:19–29. doi: 10.1034/j.1399-3054.2003.00095.x. DOI
Procházková D., Haisel D., Wilhelmová N. Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span. Cell Biochem. Funct. 2008;26:582–590. doi: 10.1002/cbf.1481. PubMed DOI
He P., Osaki M., Takebe M., Shinano T., Wasaki J. Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J. Exp. Bot. 2005;56:1117–1128. doi: 10.1093/jxb/eri103. PubMed DOI
Abiotic Stress in Crop Production
Plant hormone cytokinin at the crossroads of stress priming and control of photosynthesis
Cytokinin N-glucosides: Occurrence, Metabolism and Biological Activities in Plants
Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress