• This record comes from PubMed

Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis

. 2018 Dec 14 ; 19 (12) : . [epub] 20181214

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
CZ.02.1.01/0.0/0.0/17_048/0007323 ERDF

Cytokinins modulate a number of important developmental processes, including the last phase of leaf development, known as senescence, which is associated with chlorophyll breakdown, photosynthetic apparatus disintegration and oxidative damage. There is ample evidence that cytokinins can slow down all these senescence-accompanying changes. Here, we review relationships between the various mechanisms of action of these regulatory molecules. We highlight their connection to photosynthesis, the pivotal process that generates assimilates, however may also lead to oxidative damage. Thus, we also focus on cytokinin induction of protective responses against oxidative damage. Activation of antioxidative enzymes in senescing tissues is described as well as changes in the levels of naturally occurring antioxidative compounds, such as phenolic acids and flavonoids, in plant explants. The main goal of this review is to show how the biological activities of cytokinins may be related to their chemical structure. New links between molecular aspects of natural cytokinins and their synthetic derivatives with antisenescent properties are described. Structural motifs in cytokinin molecules that may explain why these molecules play such a significant regulatory role are outlined.

See more in PubMed

Davies P.J. In: Plant Hormones. Davies P.J., editor. Springer; Dordrecht, The Netherlands: 2010.

Strnad M. The aromatic cytokinins. Physiol. Plant. 1997;101:674–688. doi: 10.1111/j.1399-3054.1997.tb01052.x. DOI

Plíhalová L., Vylíčilová H., Doležal K., Zahajská L., Zatloukal M., Strnad M. Synthesis of aromatic cytokinins for plant biotechnology. New Biotechnol. 2016;33:614–624. doi: 10.1016/j.nbt.2015.11.009. PubMed DOI

Mok D.W.S., Mok M.C. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001;52:89–118. doi: 10.1146/annurev.arplant.52.1.89. PubMed DOI

Van Staden J. Cytokinins and senescence. Senescence Aging Plants. 1988:281–328. doi: 10.1016/B978-0-12-520920-5.50015-8. DOI

Gan S., Amasino R.M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science. 1995;270:1986–1988. doi: 10.1126/science.270.5244.1986. PubMed DOI

Rivero R.M., Kojima M., Gepstein A., Sakakibara H., Mittler R., Gepstein S., Blumwald E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. USA. 2007;104:19631–19636. doi: 10.1073/pnas.0709453104. PubMed DOI PMC

Koprna R., de Diego N., Dundálková L., Spíchal L. Use of cytokinins as agrochemicals. Bioorg. Med. Chem. 2016;24:484–492. doi: 10.1016/j.bmc.2015.12.022. PubMed DOI

Koyama T. A hidden link between leaf development and senescence. Plant Sci. 2018;276:105–110. doi: 10.1016/j.plantsci.2018.08.006. PubMed DOI

Toscano S., Trivellini A., Ferrante A., Romano D. Physiological mechanisms for delaying the leaf yellowing of potted geranium plants. Sci. Hortic. 2018;242:146–154. doi: 10.1016/j.scienta.2018.07.030. DOI

Kulaeva O.N. The influence of roots on leaf metabolism in relation to kinetin action. Sov. Plant Physiol. 1962;9:229–239.

Brizzolari A., Marinello C., Carini M., Santaniello E., Biondi P.A. Evaluation of the antioxidant activity and capacity of some natural N6-substituted adenine derivatives (cytokinins) by fluorimetric and spectrophotometric assays. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016;1019:164–168. doi: 10.1016/j.jchromb.2015.12.047. PubMed DOI

Vanacker H. Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. J. Exp. Bot. 2006;57:1735–1745. doi: 10.1093/jxb/erl012. PubMed DOI

Pilarska M., Skowron E., Pietraś R., Krupinska K., Niewiadomska E. Changes in lipid peroxidation in stay-green leaves of tobacco with senescence-induced synthesis of cytokinins. Plant Physiol. Biochem. 2017;118:161–167. doi: 10.1016/j.plaphy.2017.06.018. PubMed DOI

Zimmermann P., Heinlein C., Orendi G., Zentgraf U. Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant, Cell Environ. 2006;29:1049–1060. doi: 10.1111/j.1365-3040.2005.01459.x. PubMed DOI

Richmond A.E., Lang A. Effect of kinetin on protein content and survival of detached Xanthium leaves. Science. 1957;125:650–651. doi: 10.1126/science.125.3249.650-a. PubMed DOI

Dyer T.A., Osborne D.J. Leaf nucleic acids. J. Exp. Bot. 1971;22:552–560. doi: 10.1093/jxb/22.3.552. DOI

Kamínek M., Luštinec J. Sensitivity of oat leaf chlorophyll retention bioassay to natural and synthetic cytokinins. Biol. Plant. 1978;20:377–382. doi: 10.1007/BF02923332. DOI

Holub J., Hanuš J., Hanke D.E., Strnad M. Biological activity of cytokinins derived from Ortho- and Meta-hydroxybenzyladenine. Plant Growth Regul. 1998;26:109–115. doi: 10.1023/A:1006192619432. DOI

Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P.I., Galuszka P., Klíma P., Gaudinová A., Žižková E., et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI

Mik V., Szüčová L., Spíchal L., Plíhal O., Nisler J., Zahajská L., Doležal K., Strnad M. N9-Substituted N6-[(3-methylbut-2-en-1-yl)amino]purine derivatives and their biological activity in selected cytokinin bioassays. Bioorg. Med. Chem. 2011;19:7244–7251. doi: 10.1016/j.bmc.2011.09.052. PubMed DOI

Spíchal L., Rakova N.Y., Riefler M., Mizuno T., Romanov G.A., Strnad M., Schmülling T. Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 2004;45:1299–1305. doi: 10.1093/pcp/pch132. PubMed DOI

Kim H.J., Ryu H., Hong S.H., Woo H.R., Lim P.O., Lee I.C., Sheen J., Nam H.G., Hwang I. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2006;103:814–819. doi: 10.1073/pnas.0505150103. PubMed DOI PMC

Doležal K., Popa I., Kryštof V., Spíchal L., Fojtíková M., Holub J., Lenobel R., Schmülling T., Strnad M. Preparation and biological activity of 6-benzylaminopurine derivatives in plants and human cancer cells. Bioorganic Med. Chem. 2006;14:875–884. doi: 10.1016/j.bmc.2005.09.004. PubMed DOI

Gan S., Amasino R. Cytokinins in plant senescence: From spray and pray to clone and play. BioEssays. 1996;18:557–565. doi: 10.1002/bies.950180707. DOI

Noodén L.D., Singh S., Letham D.S. Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol. 1990;93:33–39. doi: 10.1104/pp.93.1.33. PubMed DOI PMC

Singh S., Letham D.S., Palni L.M.S. Cytokinin biochemistry in relation to leaf senescence. VII. Endogenous cytokinin levels and exogenous applications of cytokinins in relation to sequential leaf senescence of tobacco. Physiol. Plant. 1992;86:388–397. doi: 10.1111/j.1399-3054.1992.tb01334.x. DOI

Podlešáková K., Zalabák D., Čudejková M., Plíhal O., Szüčová L., Doležal K., Spíchal L., Strnad M., Galuszka P. Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. PLoS ONE. 2012;7:e39293. doi: 10.1371/journal.pone.0039293. PubMed DOI PMC

Dhindsa R.S., Plumb-Dhindsa P.L., Reid D.M. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol. Plant. 1982;56:453–457. doi: 10.1111/j.1399-3054.1982.tb04539.x. DOI

Del Río L.A., Pastori G.M., Palma J.M., Sandalio L.M., Sevilla F., Corpas F.J., Jiménez A., López-Huertas E., Hernández J.A. The activated oxygen role of peroxisomes in senescence. Plant Physiol. 1998;116:1195–1200. doi: 10.1104/pp.116.4.1195. PubMed DOI PMC

Jiao D., Ji B., Li X. Characteristics of chlorophyll fluorescence and membrane-lipid peroxidation during senescence of flag leaf in different cultivars of rice. Photosynthetica. 2003;41:33–41. doi: 10.1023/A:1025848110029. DOI

Cabello P., Agüera E., de la Haba P. Metabolic changes during natural ageing in sunflower (Helianthus annuus) leaves: Expression and activity of glutamine synthetase isoforms are regulated differently during senescence. Physiol. Plant. 2006;128:175–185. doi: 10.1111/j.1399-3054.2006.00722.x. DOI

Jajić I., Sarna T., Szewczyk G., Strzałka K. Changes in production of reactive oxygen species in illuminated thylakoids isolated during development and senescence of barley. J. Plant Physiol. 2015;184:49–56. doi: 10.1016/j.jplph.2015.06.009. PubMed DOI

Mik V., Szüčová L., Šmehilová M., Zatloukal M., Doležal K., Nisler J., Grúz J., Galuszka P., Strnad M., Spíchal L. N9-substituted derivatives of kinetin: Effective anti-senescence agents. Phytochemistry. 2011;72:821–831. doi: 10.1016/j.phytochem.2011.02.002. PubMed DOI

Zavaleta-Mancera H.A., López-Delgado H., Loza-Tavera H., Mora-Herrera M., Trevilla-García C., Vargas-Suárez M., Ougham H. Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J. Plant Physiol. 2007;164:1572–1582. doi: 10.1016/j.jplph.2007.02.003. PubMed DOI

Novák J., Pavlů J., Novák O., Nožková-Hlaváčková V., Špundová M., Hlavinka J., Koukalová Š., Skalák J., Černý M., Brzobohatý B. High cytokinin levels induce a hypersensitive-like response in tobacco. Ann. Bot. 2013;112:41–55. doi: 10.1093/aob/mct092. PubMed DOI PMC

Zhang R., David L.S. Cytokinin biochemistry in relation to leaf senescence. III. The senescence-retarding activity and metabolism of 9-substituted 6-benzylaminopurines in soybean leaves. J. Plant Growth Regul. 1989;8:181–197. doi: 10.1007/BF02308087. DOI

Corse J., Pacovsky R.S., Lyman M.L., Brandon D.L. Biological activity of several 9-nonglycosidic-substituted natural cytokinins. J. Plant Growth Regul. 1989;8:211–223. doi: 10.1007/BF02308090. DOI

Szüčová L., Spíchal L., Doležal K., Zatloukal M., Greplová J., Galuszka P., Kryštof V., Voller J., Popa I., Massino F.J., et al. Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives. Bioorganic Med. Chem. 2009;17:1938–1947. doi: 10.1016/j.bmc.2009.01.041. PubMed DOI

Szüčová L., Zatloukal M., Spíchal L., Fröhlich L., Doležal K., Strnad M., Massino F. 6,9-Disubstituted Purine Derivatives and their Use for Treating Skin. Patent EP 2043630. 2016 May 10

Szüčová L., Zatloukal M., Spíchal L., Voller J., Doležal K., Strnad M., Massino F.J. 6,9-Disubstituted Purine Derivatives and Their Use as Cosmetics and Cosmetic Compositions. Patent US7960397. 2011 Jun 14

Zatloukal M., Gemrotová M., Doležal K., Havlíček L., Spíchal L., Strnad M. Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg. Med. Chem. 2008;16:9268–9275. doi: 10.1016/j.bmc.2008.09.008. PubMed DOI

Doležal K., Popa I., Hauserová E., Spíchal L., Chakrabarty K., Novák O., Kryštof V., Voller J., Holub J., Strnad M. Preparation, biological activity and endogenous occurrence of N6-benzyladenosines. Bioorg. Med. Chem. 2007;15:3737–3747. doi: 10.1016/j.bmc.2007.03.038. PubMed DOI

Vylíčilová H., Husičková A., Spíchal L., Srovnal J., Doležal K., Plíhal O., Plíhalová L. C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. Phytochemistry. 2016;122:22–33. doi: 10.1016/j.phytochem.2015.12.001. PubMed DOI

Hönig M., Plíhalová L., Spíchal L., Grúz J., Kadlecová A., Voller J., Svobodová A.R., Vostálová J., Ulrichová J., Doležal K., Strnad M. New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. Eur. J. Med. Chem. 2018;150:946–957. doi: 10.1016/j.ejmech.2018.03.043. PubMed DOI

Bråthe A., Andresen G., Gundersen L.L., Malterud K.E., Rise F. Antioxidant activity of synthetic cytokinin analogues: 6-Alkynyl- and 6-alkenylpurines as novel 15-lipoxygenase inhibitors. Bioorg. Med. Chem. 2002;10:1581–1586. doi: 10.1016/S0968-0896(01)00427-8. PubMed DOI

Zahajská L., Nisler J., Voller J., Gucký T., Pospíšil T., Spíchal L., Strnad M. Preparation, characterization and biological activity of C8-substituted cytokinins. Phytochemistry. 2017;135:115–127. doi: 10.1016/j.phytochem.2016.12.005. PubMed DOI

Skoog F., Hamzi H.Q., Szweykowska A.M., Leonard N.J., Carraway K.L., Fujii T., Helgeson J.P., Loeppky R.N. Cytokinins: Structure/activity relationships. Phytochemistry. 1967;6:1169–1192. doi: 10.1016/S0031-9422(00)86080-X. DOI

Nisler J., Zatloukal M., Sobotka R., Pilný J., Zdvihalová B., Novák O., Strnad M., Spíchal L. New urea derivatives are effective anti-senescence compounds acting most likely via a cytokinin-independent mechanism. Front. Plant Sci. 2018;9:1–17. doi: 10.3389/fpls.2018.01225. PubMed DOI PMC

Mok M.C., Mok D.W.S., Armstrong D.J., Shudo K., Isogai Y., Okamoto T. Cytokinin activity of N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (thidiazuron) Phytochemistry. 1982;21:1509–1511. doi: 10.1016/S0031-9422(82)85007-3. DOI

Thomas J.C., Katterman F.R. Cytokinin activity induced by thidiazuron. Plant Physiol. 1986;81:681–683. doi: 10.1104/pp.81.2.681. PubMed DOI PMC

Ferrante A., Hunter D.A., Hackett W.P., Reid M.S. Thidiazuron—A potent inhibitor of leaf senescence in Alstroemeria. Postharvest Biol. Technol. 2002;25:333–338. doi: 10.1016/S0925-5214(01)00195-8. DOI

Ferrante A., Tognoni F., Mensuali-Sodi A., Serra G. Treatment with thidiazuron for preventing leaf yellowing in cut tulips and Chrysanthemum. Acta Hortic. 2003:357–363. doi: 10.17660/ActaHortic.2003.624.49. DOI

Mutui T., Mibus H., Serek M. Effects of thidiazuron, ethylene, abscisic acid and dark storage on leaf yellowing and rooting of Pelargonium cuttings. J. Hortic. Sci. Biotechnol. 2005;80:543–550. doi: 10.1080/14620316.2005.11511975. DOI

Nisler J. TDZ: Mode of Action, Use and Potential in Agriculture. In: Ahmad N., Faisal M., editors. Thidiazuron: From Urea Derivative to Plant Growth Regulator. Springer; Singapore: 2018. pp. 37–59.

Whitty C.D., Hall R.H. A Cytokinin Oxidase in Zea mays. Can. J. Biochem. 1974;52:789–799. doi: 10.1139/o74-112. PubMed DOI

Brownlee B.G., Hall R.H., Whitty C.D. 3-Methyl-2-butenal: An Enzymatic Degradation Product of the Cytokinin, N6-(Δ2-Isopentenyl)adenine. Can. J. Biochem. 1975;53:37–41. doi: 10.1139/o75-006. PubMed DOI

Chatfield J.M., Armstrong D.J. Regulation of cytokinin oxidase activity in callus tissues of Phaseolus vulgaris L. cv great northern. Plant Physiol. 1986;80:493–499. doi: 10.1104/pp.80.2.493. PubMed DOI PMC

Kopečný D., Briozzo P., Popelková H., Šebela M., Končitíková R., Spíchal L., Nisler J., Madzak C., Frébort I., Laloue M., Houba-Hérin N. Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: A structural study. Biochimie. 2010;92:1052–1062. doi: 10.1016/j.biochi.2010.05.006. PubMed DOI

Nisler J., Kopečný D., Končitíková R., Zatloukal M., Bazgier V., Berka K., Zalabák D., Briozzo P., Strnad M., Spíchal L. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. Plant Mol. Biol. 2016;92:235–248. doi: 10.1007/s11103-016-0509-0. PubMed DOI

Ferrante A., Vernieri P., Serra G., Tognoni F. Changes in abscisic acid during leaf yellowing of cut stock flowers. Plant Growth Regul. 2004;43:127–134. doi: 10.1023/B:GROW.0000040119.27627.b2. DOI

Mayak S., Halevy A.H. Interrelationships of Ethylene and abscisic acid in the control of rose petal senescence. Plant Physiol. 1972;50:341–346. doi: 10.1104/pp.50.3.341. PubMed DOI PMC

Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 2010;61:651–679. doi: 10.1146/annurev-arplant-042809-112122. PubMed DOI

Mutui T.M., Mibus H., Serek M. Influence of thidiazuron, ethylene, abscisic acid and dark storage on the expression levels of ethylene receptors (ETR) and ACC synthase (ACS) genes in Pelargonium. Plant Growth Regul. 2007;53:87–96. doi: 10.1007/s10725-007-9206-y. DOI

Abeles F.B., Dunn L.J., Morgens P., Callahan A., Dinterman R.E., Schmidt J. Induction of 33-kD and 60-kD peroxidases during ethylene-induced senescence of cucumber cotyledons. Plant Physiol. 1988;87:609–615. doi: 10.1104/pp.87.3.609. PubMed DOI PMC

Reid M.S. Ethylene in plant growth, development, and senescence. In: Davies P.J., editor. Plant Hormones. Springer; Dordrecht, The Netherlands: 1995. pp. 486–508.

Hatami M., Hatamzadeh A., Ghasemnezhad M., Sajedi R.H. Antioxidant enzymatic protection during pelargonium plant leaf senescence is mediated by thidiazuron. Trakia J. Sci. 2013;11:152–157.

Kaur P., Singh K. Influence of growth regulators on physiology and senescence of cut stemsof Chrysanthemum (Chrysanthemum morifolium Ramat) Var. thai ching queen. IJAPPR. 2015;2:31–41.

Aremu A.O., Bairu M.W., Szüčová L., Doležal K., Finnie J.F., van Staden J. Assessment of the role of meta-topolins on in vitro produced phenolics and acclimatization competence of micropropagated “Williams” banana. Acta Physiol. Plant. 2012;34:2265–2273. doi: 10.1007/s11738-012-1027-6. PubMed DOI

Aremu A.O., Gruz J., Šubrtová M., Szüčová L., Doležal K., Bairu M.W., Finnie J.F., van Staden J. Antioxidant and phenolic acid profiles of tissue cultured and acclimatized Merwilla plumbea plantlets in relation to the applied cytokinins. J. Plant Physiol. 2013;170:1303–1308. doi: 10.1016/j.jplph.2013.04.008. PubMed DOI

Pietta P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000;63:1035–1042. doi: 10.1021/np9904509. PubMed DOI

Shang X., He X., He X., Li M., Zhang R., Fan P., Zhang Q., Jia Z. The genus Scutellaria an ethnopharmacological and phytochemical review. J. Ethnopharmacol. 2010;128:279–313. doi: 10.1016/j.jep.2010.01.006. PubMed DOI

Alipieva K., Korkina L., Orhan I.E., Georgiev M.I. Verbascoside—A review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol. Adv. 2014;32:1065–1076. doi: 10.1016/j.biotechadv.2014.07.001. PubMed DOI

Grzegorczyk-Karolak I., Rytczak P., Bielecki S., Wysokińska H. The influence of liquid systems for shoot multiplication, secondary metabolite production and plant regeneration of Scutellaria alpina. Plant Cell Tissue Organ Cult. 2017;128:479–486. doi: 10.1007/s11240-016-1126-y. DOI

Grzegorczyk-Karolak I., Kuźma Ł., Wysokińska H. The effect of cytokinins on shoot proliferation, secondary metabolite production and antioxidant potential in shoot cultures of Scutellaria alpina. Plant Cell Tissue Organ Cult. 2015;122:699–708. doi: 10.1007/s11240-015-0804-5. DOI

Grzegorczyk-Karolak I., Kuźma Ł., Wysokińska H. Study on the chemical composition and antioxidant activity of extracts from shoot culture and regenerated plants of Scutellaria altissima L. Acta Physiol. Plant. 2015;37:1–9. doi: 10.1007/s11738-014-1736-0. DOI

Aremu A.O., Stirk W.A., Masondo N.A., Plačková L., Novák O., Pěnčík A., Zatloukal M., Nisler J., Spíchal L., Doležal K., et al. Dissecting the role of two cytokinin analogues (INCYDE and PI-55) on in vitro organogenesis, phytohormone accumulation, phytochemical content and antioxidant activity. Plant Sci. 2015;238:81–94. doi: 10.1016/j.plantsci.2015.05.018. PubMed DOI

Grúz J., Spíchal L. International PSE Symposium on Phytochemicals in Nutrition and Health. BARI; Giovinazzo, Italy: 2011. Application of purine derivative LGR-1814 improves func- tional properties of field-grown lettuce (Lactuca sativa) p. 30.

Coste A., Vlase L., Halmagyi A., Deliu C., Coldea G. Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tissue Organ Cult. 2011;106:279–288. doi: 10.1007/s11240-011-9919-5. DOI

Kirakosyan A., Gibson D.M., Kaufman P.B. The production of dianthrones and phloroglucinol derivatives in St. John’s Wort. In: Ramawat K., Merillon J., editors. Bioactive Molecules and Medicinal Plants. Springer; Berlin/Heidelberg, Germany: 2008. pp. 149–164.

Petrova M., Nikolova M., Zayova E. Micropropagation and evaluation of flavonoid content and antioxidant activity of salvia. Genet. Plant Physiol. 2015;5:48–60.

De Moura F.B., Vieira M.R.D.S., Simoes A.D.N., Ferreira-Silva S.L., de Souza C.A., de Souza E.S., da Rocha A.T., da Silva L.F., Miguel A. Physiological effect of kinetin on the photosynthetic apparatus and antioxidant enzymes activities during production of anthurium. Hortic. Plant J. 2018;4:182–192. doi: 10.1016/j.hpj.2018.04.001. DOI

Zhang D., Xu X., Zhang Z., Jiang G., Feng L., Duan X., Jiang Y. 6-Benzylaminopurine improves the quality of harvested litchi fruit. Postharvest Biol. Technol. 2018;143:137–142. doi: 10.1016/j.postharvbio.2018.05.002. DOI

Wu X., Zhu Z., Li X., Zha D. Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena L.) under salinity stress. Acta Physiol. Plant. 2012;34:2105–2114. doi: 10.1007/s11738-012-1010-2. DOI

Yang D.Q., Luo Y.L., Dong W.H., Yin Y.P., Li Y., Wang Z.L. Response of photosystem II performance and antioxidant enzyme activities in stay-green wheat to cytokinin. Photosynthetica. 2018;56:567–577. doi: 10.1007/s11099-017-0708-1. DOI

Liu X., Huang B., Banowetz G. Cytokinin effects on creeping bentgrass responses to heat stress: I. Shoot and root growth. Crop Sci. 2002;42:457–465. doi: 10.2135/cropsci2002.4570. DOI

Ren B., Zhang J., Dong S., Liu P., Zhao B. Exogenous 6-benzyladenine improves antioxidative system and carbon metabolism of summer maize waterlogged in the field. J. Agron. Crop Sci. 2018;204:175–184. doi: 10.1111/jac.12253. DOI

Hung K.T., Kao C.H. Involvement of lipid peroxidation in water stress-promoted senescence of detached rice leaves. Plant Growth Regul. 1998;24:17–21. doi: 10.1023/A:1005988727235. DOI

Xu Y., Huang B. Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Sci. 2009;49:1876. doi: 10.2135/cropsci2008.07.0441. DOI

Todorov D., Alexieva V., Karanov E. Effect of putrescine, 4-PU-30, and abscisic acid on maize plants grown under normal, drought, and rewatering conditions. J. Plant Growth Regul. 1998;17:197–203. doi: 10.1007/PL00007035. PubMed DOI

Ogweno J.O., Hu W.H., Song X.S., Shi K., Mao W.H., Zhou Y.H., Yu J.Q. Photoinhibition-induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. Plant Growth Regul. 2010;60:175–182. doi: 10.1007/s10725-009-9439-z. DOI

Ahanger M.A., Alyemeni M.N., Wijaya L., Alamri S.A., Alam P., Ashraf M., Ahmad P. Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS ONE. 2018;13:e0202175. doi: 10.1371/journal.pone.0202175. PubMed DOI PMC

Zwack P.J., Rashotte A.M. Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 2015;66:4863–4871. doi: 10.1093/jxb/erv172. PubMed DOI

Jameson P.E. Encyclopedia of Applied Plant Sciences. Volume 1. Elsevier; Amsterdam, The Netherlands: 2017. Cytokinins; pp. 391–402.

Spallek T., Melnyk C.W., Wakatake T., Zhang J., Sakamoto Y., Kiba T., Yoshida S., Matsunaga S., Sakakibara H., Shirasu K. Interspecies hormonal control of host root morphology by parasitic plants. Proc. Natl. Acad. Sci. USA. 2017;114:5283–5288. doi: 10.1073/pnas.1619078114. PubMed DOI PMC

Sardesai N., Lee L., Chen H., Yi H., Olbricht G.R., Stirnberg A., Jeffries J., Xiong K., Doerge R.W., Gelvin S.B. Cytokinins secreted by Agrobacterium promote transformation by repressing a plant myb transcription factor. Sci. Signal. 2013;6 doi: 10.1126/scisignal.2004518. PubMed DOI

Spallek T., Gan P., Kadota Y., Shirasu K. Same tune, different song—Cytokinins as virulence factors in plant–pathogen interactions? Curr. Opin. Plant Biol. 2018;44:82–87. doi: 10.1016/j.pbi.2018.03.002. PubMed DOI

Savory E.A., Fuller S.L., Weisberg A.J., Thomas W.J., Gordon M.I., Stevens D.M., Creason A.L., Belcher M.S., Serdani M., Wiseman M.S., et al. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. Elife. 2017;6:1–28. doi: 10.7554/eLife.30925. PubMed DOI PMC

Stirk W.A., van Staden J. Flow of cytokinins through the environment. Plant Growth Regul. 2010;62:101–116. doi: 10.1007/s10725-010-9481-x. DOI

Hinsch J., Galuszka P., Tudzynski P. Functional characterization of the first filamentous fungal tRNA-isopentenyltransferase and its role in the virulence of Claviceps purpurea. New Phytol. 2016;211:980–992. doi: 10.1111/nph.13960. PubMed DOI

Choi J., Huh S.U., Kojima M., Sakakibara H., Paek K.H., Hwang I. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev. Cell. 2010;19:284–295. doi: 10.1016/j.devcel.2010.07.011. PubMed DOI

Naseem M., Dandekar T. The role of auxin-cytokinin antagonism in plant-pathogen interactions. PLoS Pathog. 2012;8:e1003026. doi: 10.1371/journal.ppat.1003026. PubMed DOI PMC

Walters D.R., McRoberts N. Plants and biotrophs: A pivotal role for cytokinins? Trends Plant Sci. 2006;11:581–586. doi: 10.1016/j.tplants.2006.10.003. PubMed DOI

Chernyad’ev I.I. Photosynthesis in sugar beet plants treated with benzyladenine and metribuzin during leaf ontogeny. Russ. J. Plant Physiol. 2000;47:161–167.

Chernyad’Ev I.I. Ontogenetic changes in the photosynthetic apparatus and effects of cytokinins (review) Appl. Biochem. Microbiol. 2000;36:527–528. doi: 10.1023/A:1026628119243. DOI

Stoynova E.Z., Iliev L.K., Georgiev G.T. Structural and functional alterations in radish plants induced by the phenylurea cytokinin 4-PU-30. Biol. Plant. 1996;38:237–244. doi: 10.1007/BF02873852. DOI

Tao G.-Q., Letham D.S., Yong J.W.H., Zhang K., John P.C.L., Schwartz O., Wong S.C., Farquhar G.D. Promotion of shoot development and tuberisation in potato by expression of a chimaeric cytokinin synthesis gene at normal and elevated CO2 levels. Funct. Plant Biol. 2010;37:43. doi: 10.1071/FP07032. DOI

Kulaeva O.N., Burkhanova E.A., Karavaiko N.N., Selivankina S.Y., Porfirova S.A., Maslova G.G., Zemlyachenko Y.V., Börner T. Chloroplasts affect the leaf response to cytokinin. J. Plant Physiol. 2002;159:1309–1316. doi: 10.1078/0176-1617-00761. DOI

Boasson R., Laetsch W.M. Chloroplast replication and growth in tobacco. Science. 1969;166:749–751. doi: 10.1126/science.166.3906.749. PubMed DOI

Harvey B.M.R., Lu B.C., Fletcher R.A. Benzyladenine accelerates chloroplast differentiation and stimulates photosynthetic enzyme activity in cucumber cotyledons. Can. J. Bot. 1974;52:2581–2586. doi: 10.1139/b74-334. DOI

Momotani E., Aoki K., Tsuji H. Effect of benzyladenine on diurnal changes in DNA content per chloroplast and chloroplast replication in intact bean leaves. J. Exp. Bot. 1991;42:1287–1293. doi: 10.1093/jxb/42.10.1287. DOI

Chory J., Reinecke D., Sim S., Washburn T., Brenner M. A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins) Plant Physiol. 1994;104:339–347. doi: 10.1104/pp.104.2.339. PubMed DOI PMC

Okazaki K., Kabeya Y., Suzuki K., Mori T., Ichikawa T., Matsui M., Nakanishi H., Miyagishima S. The plastid division 1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation. Plant Cell Online. 2009;21:1769–1780. doi: 10.1105/tpc.109.067785. PubMed DOI PMC

Sudriá C., Palazón J., Cusidó R., Bonfill M., Piñol M.T., Morales C. Effect of benzyladenine and indolebutyric acid on ultrastructure, glands formation, and essential oil accumulation in Lavandula dentata plantlets. Biol. Plant. 2001;44:1–6. doi: 10.1023/A:1017998800224. DOI

Kusnetsov V., Herrmann R.G., Kulaeva O.N., Oelmüller R. Cytokinin stimulates and abscisic acid inhibits greening of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidoreductase. Mol. Gen. Genet. 1998;259:21–28. doi: 10.1007/PL00008626. PubMed DOI

Kuroda H., Masuda T., Fusada N., Ohta H., Takamiya K.-I. Cytokinin–induced transcriptional activation of NADPH–protochlorophyllide oxidoreductase gene in cucumber. J. Plant Res. 2001;114:1–7. doi: 10.1007/PL00013963. DOI

Wilhelmova N., Kutik J. Influence of exogenously applied 6-benzylaminopurine on the structure of chloroplasts and arrangement of their membranes. Photosynthetica. 1995;31:559–570.

Zavaleta-Mancera H.A., Thomas B.J., Thomas H., Scott I.M. Regreening of senescent nicotiana leaves. II. Redifferentiation of plastids. J. Exp. Bot. 1999;50:1683–1689. doi: 10.1093/jxb/50.340.1683. DOI

Zavaleta-Mancera H.A., Franklin K.A., Ougham H.J., Thomas H., Scott I.M. Regreening of senescent Nicotiana leaves. I. Reappearance of NADPH-protochlorophyllide oxidoreductase and light-harvesting chlorophyll A/B-binding protein. J. Exp. Bot. 1999;50:1677–1682. doi: 10.1093/jxb/50.340.1677. DOI

Talla S.K., Panigrahy M., Kappara S., Nirosha P., Neelamraju S., Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J. Exp. Bot. 2016;67:1839–1851. doi: 10.1093/jxb/erv575. PubMed DOI PMC

Paramonova N.V., Krasavina M.S., Sokolova S.V. Ultrastructure of chloroplasts in phloem companion cells and mesophyll cells as related to the stimulation of sink activity by cytokinins. Russ. J. Plant Physiol. 2002;49:187–195. doi: 10.1023/A:1014893221505. DOI

Synková H., Schnablová R., Polanská L., Hušák M., Šiffel P., Vácha F., Malbeck J., Macháčková I., Nebesářová J. Three-dimensional reconstruction of anomalous chloroplasts in transgenic ipt tobacco. Planta. 2006;223:659–671. doi: 10.1007/s00425-005-0119-6. PubMed DOI

Vlckova A., Spundova M., Kotabova E., Novotny R., Dolezal K., Naus J. Protective cytokinin action switches to damaging during senescence of detached wheat leaves in continuous light. Physiol. Plant. 2006;126:257–267. doi: 10.1111/j.1399-3054.2006.00593.x. DOI

Criado M.V., Caputo C., Roberts I.N., Castro M.A., Barneix A.J. Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum) J. Plant Physiol. 2009;166:1775–1785. doi: 10.1016/j.jplph.2009.05.007. PubMed DOI

Cortleven A., Schmülling T. Regulation of chloroplast development and function by cytokinin. J. Exp. Bot. 2015;66:4999–5013. doi: 10.1093/jxb/erv132. PubMed DOI

Lerbs S., Lerbs W., Klyachko N.L., Romanko E.G., Kulaeva O.N., Wollgiehn R., Parthier B. Gene expression in cytokinin-and light-mediated plastogenesis of Cucurbita cotyledons: Ribulose-1,5-bisphosphate carboxylase/oxygenase. Planta. 1984;162:289–298. doi: 10.1007/BF00396739. PubMed DOI

Ohya T., Suzuki H. The effects of benzyladenine on the accumulation of messenger RNAs that encode the large and small subunits of ribulose-l,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll A/B protein in excised cucumber cotyledons. Plant Cell Physiol. 1991;32:577–580. doi: 10.1093/oxfordjournals.pcp.a078118. DOI

Benková E., Witters E., Van Dongen W., Kolar J., Motyka V., Brzobohatý B., van Onckelen H.A., Machácková I. Cytokinins in tobacco and wheat chloroplasts. occurrence and changes due to light/dark treatment. Plant Physiol. 1999;121:245–252. doi: 10.1104/pp.121.1.245. PubMed DOI PMC

Kasahara H., Takei K., Ueda N., Hishiyama S., Yamaya T., Kamiya Y., Yamaguchi S., Sakakibara H. Distinct isoprenoid origins of cis-and trans-zeatin biosyntheses in Arabidopsis. J. Biol. Chem. 2004;279:14049–14054. doi: 10.1074/jbc.M314195200. PubMed DOI

Polanska L., Vicankova A., Novakova M., Malbeck J., Dobrev P.I., Brzobohaty B., Vankova R., Machackova I. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. J. Exp. Bot. 2007;58:637–649. doi: 10.1093/jxb/erl235. PubMed DOI

Ananieva K., Malbeck J., Kaminek M., van Staden J. Changes in endogenous cytokinin levels in cotyledons of Cucurbita pepo (zucchini) during natural and dark-induced senescence. Physiol. Plant. 2004;122:133–142. doi: 10.1111/j.1399-3054.2004.00378.x. DOI

Ananieva K., Ananiev E.D., Doncheva S., Georgieva K., Tzvetkova N., Kamínek M., Motyka V., Dobrev P., Gajdošová S., Malbeck J. Senescence progression in a single darkened cotyledon depends on the light status of the other cotyledon in Cucurbita pepo (zucchini) seedlings: Potential involvement of cytokinins and cytokinin oxidase/dehydrogenase activity. Physiol. Plant. 2008;134:609–623. doi: 10.1111/j.1399-3054.2008.01161.x. PubMed DOI

Roberts I.N., Caputo C., Kade M., Criado M.V., Barneix A.J. Subtilisin-like serine proteases involved in N remobilization during grain filling in wheat. Acta Physiol. Plant. 2011;33:1997–2001. doi: 10.1007/s11738-011-0712-1. DOI

Janečková H., Husičková A., Ferretti U., Prčina M., Pilařová E., Plačková L., Pospíšil P., Doležal K., Špundová M. The interplay between cytokinins and light during senescence in detached Arabidopsis leaves. Plant. Cell Environ. 2018;41:1870–1885. doi: 10.1111/pce.13329. PubMed DOI

Wojciechowska N., Sobieszczuk-Nowicka E., Bagniewska-Zadworna A. Plant organ senescence—Regulation by manifold pathways. Plant Biol. 2018;20:167–181. doi: 10.1111/plb.12672. PubMed DOI

Weidhase R.A., Lehmann J., Kramell H., Sembdner G., Parthier B. Degradation of ribulose-1,5-bisphosphate carboxylase and chlorophyll in senescing barley leaf segments triggered by jasmonic acid methylester, and counteraction by cytokinin. Physiol. Plant. 1987;69:161–166. doi: 10.1111/j.1399-3054.1987.tb01961.x. DOI

Selivankina S.Y., Karavaiko N.N., Kuiper D., Novikova G.V., Kulaeva O.N. Cytokinin activity of zeatin allylic phosphate, a natural compound. Plant Growth Regul. 2001;33:157–164. doi: 10.1023/A:1017553023145. DOI

Liu X., Huang B. Cytokinin effects on creeping bentgrass response to heat stress. Crop Sci. 2002;42:466. doi: 10.2135/cropsci2002.4660. DOI

Hudák J., Vizárová G., Šikulová J., Ovečková O. Effect of cytokinins produced by strains of Agrobacterium tumefaciens with binary vectors on plastids in senescent barley leaves. Acta Physiol. Plant. 1996;18:205–210.

Catsky J., Pospisilova J., Kaminek M., Gaudinova A., Pulkrabek J., Zahradnicek J. Seasonal changes in sugar beet photosynthesis as affected by exogenous cytokinin N6-(m-hydroxybenzyl)adenosine. Biol. Plant. 1996;38:511–518. doi: 10.1007/BF02890598. DOI

Rivero R.M., Shulaev V., Blumwald E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol. 2009;150:1530–1540. doi: 10.1104/pp.109.139378. PubMed DOI PMC

Zhang Y., Liang C.Y., Xu Y., Gianfagna T., Huang B.R. Effects of Ipt gene expression on leaf senescence induced by nitrogen or phosphorus deficiency in creeping bentgrass. J. Am. Soc. Hortic. Sci. 2010;135:108–115.

Wang K., Zhang X., Ervin E. Effects of nitrate and cytokinin on creeping bentgrass under supraoptimal temperatures. J. Plant Nutr. 2013;36:1549–1564. doi: 10.1080/01904167.2013.799184. DOI

Weaver L.M., Gan S., Quirino B., Amasino R.M. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol. Biol. 1998;37:455–469. doi: 10.1023/A:1005934428906. PubMed DOI

Gepstein S., Sabehi G., Carp M.-J., Hajouj T., Nesher M.F.O., Yariv I., Dor C., Bassani M. Large-scale identification of leaf senescence-associated genes. Plant J. 2003;36:629–642. doi: 10.1046/j.1365-313X.2003.01908.x. PubMed DOI

Costa M.L., Civello P.M., Chaves A.R., Martínez G.A. Effect of ethephon and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked chlorophyll bleaching during post-harvest senescence of broccoli (Brassica oleracea L.) at 20 °C. Postharvest Biol. Technol. 2005;35:191–199. doi: 10.1016/j.postharvbio.2004.07.007. DOI

Sergiev I., Todorova D., Somleva M., Alexieva V., Karanov E., Stanoeva E., Lachkova V., Smith A., Hall M. Influence of cytokinins and novel cytokinin antagonists on the senescence of detached leaves of Arabidopsis thaliana. Biol. Plant. 2007;51:377–380. doi: 10.1007/s10535-007-0079-8. DOI

Büchert A.M., Civello P.M., Martínez G.A. Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. J. Plant Physiol. 2011;168:337–343. doi: 10.1016/j.jplph.2010.07.011. PubMed DOI

Kuderová A., Gallová L., Kuricová K., Nejedlá E., Čurdová A., Micenková L., Plíhal O., Šmajs D., Spíchal L., Hejátko J. Identification of AHK2- and AHK3-like cytokinin receptors in Brassica napus reveals two subfamilies of AHK2 orthologues. J. Exp. Bot. 2015;66:339–353. doi: 10.1093/jxb/eru422. PubMed DOI

Lomin S.N., Krivosheev D.M., Steklov M.Y., Arkhipov D.V., Osolodkin D.I., Schmülling T., Romanov G.A. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 2015;66:1851–1863. doi: 10.1093/jxb/eru522. PubMed DOI PMC

Lomin S.N., Myakushina Y.A., Kolachevskaya O.O., Getman I.A., Arkhipov D.V., Savelieva E.M., Osolodkin D.I., Romanov G.A. Cytokinin perception in potato: New features of canonical players. J. Exp. Bot. 2018;69:3839–3853. doi: 10.1093/jxb/ery199. PubMed DOI PMC

Halevy A.H., Dilley D.R., Wittwer S.H. Senescence inhibition and respiration induced by growth retardants and 6N-benzyladenine. Plant Physiol. 1966;41:1085–1089. doi: 10.1104/pp.41.7.1085. PubMed DOI PMC

Adedipe N.O., Fletcher R.A. Retardation of bean leaf senescence by benzyladenine and its influence on phosphate metabolism. Plant Physiol. 1970;46:614–617. doi: 10.1104/pp.46.4.614. PubMed DOI PMC

Prokopová J., Špundová M., Sedlářová M., Husičková A., Novotný R., Doležal K., Nauš J., Lebeda A. Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiol. Biochem. 2010;48:716–723. doi: 10.1016/j.plaphy.2010.04.003. PubMed DOI

Osborne D.J. Effect of kinetin on protein & nucleic acid metabolism in Xanthium leaves during senescence. Plant Physiol. 1962;37:595–602. doi: 10.1104/pp.37.5.595. PubMed DOI PMC

Von Abrams G.J., Pratt H.K. Interaction of naphthaleneacetic acid and kinetin in the senescence of detached leaves. Plant Physiol. 1966;41:1525–1530. doi: 10.1104/pp.41.9.1525. PubMed DOI PMC

Kasamo K. The role of the epidermis in kinetin-induced retardation of chlorophyll degradation in tobacco leaf discs during senescence. Plant Cell Physiol. 1976;17:1297–1307.

Zubo Y.O., Yamburenko M.V., Selivankina S.Y., Shakirova F.M., Avalbaev A.M., Kudryakova N.V., Zubkova N.K., Liere K., Kulaeva O.N., Kusnetsov V.V., et al. Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol. 2008;148:1082–1093. doi: 10.1104/pp.108.122275. PubMed DOI PMC

Buschmann C., Lichtenthaler H.K. The effect of cytokinins on growth and pigment accumulation of radish seedlings (Raphanus sativus L.) Grown in the dark and at different light quanta fluence rates. Photochem. Photobiol. 1982;35:217–221. doi: 10.1111/j.1751-1097.1982.tb03835.x. DOI

Keshishian E.A., Rashotte A.M. Plant cytokinin signalling. Essays Biochem. 2015;58:13–27. doi: 10.1042/bse0580013. PubMed DOI

Brenner W.G., Ramireddy E., Heyl A., Schmülling T. Gene regulation by cytokinin in Arabidopsis. Front. Plant Sci. 2012;3:1–22. doi: 10.3389/fpls.2012.00008. PubMed DOI PMC

Heyl A., Riefler M., Romanov G.A., Schmülling T. Properties, functions and evolution of cytokinin receptors. Eur. J. Cell Biol. 2012;91:246–256. doi: 10.1016/j.ejcb.2011.02.009. PubMed DOI

Inoue T., Higuchi M., Hashimoto Y., Seki M., Kobayashi M., Kato T., Tabata S., Shinozaki K., Kakimoto T. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature. 2001;409:1060–1063. doi: 10.1038/35059117. PubMed DOI

Brenner W.G., Schmulling T. Summarizing and exploring data of a decade of cytokinin-related transcriptomics. Front. Plant Sci. 2015;6:1–13. doi: 10.3389/fpls.2015.00029. PubMed DOI PMC

Brandstatter I., Kieber J.J. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell Online. 1998;10:1009–1020. doi: 10.1105/tpc.10.6.1009. PubMed DOI PMC

Hwang I., Sheen J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature. 2001;413:383–389. doi: 10.1038/35096500. PubMed DOI

Zwack P.J., Robinson B.R., Risley M.G., Rashotte A.M. Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses. Plant Cell Physiol. 2013;54:971–981. doi: 10.1093/pcp/pct049. PubMed DOI

Cortleven A., Nitschke S., Klaumunzer M., AbdElgawad H., Asard H., Grimm B., Riefler M., Schmulling T. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase 2 and Arabidopsis histidine kinase 3 receptors. Plant Physiol. 2014;164:1470–1483. doi: 10.1104/pp.113.224667. PubMed DOI PMC

Cortleven A., Valcke R. Evaluation of the photosynthetic activity in transgenic tobacco plants with altered endogenous cytokinin content: Lessons from cytokinin. Physiol. Plant. 2012;144:394–408. doi: 10.1111/j.1399-3054.2011.01558.x. PubMed DOI

Gan S., Amasino R.M. Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence) Plant Physiol. 1997;113:313–319. doi: 10.1104/pp.113.2.313. PubMed DOI PMC

Zwack P.J., Rashotte A.M. Cytokinin inhibition of leaf senescence. Plant Signal. Behav. 2013;8:e24737. doi: 10.4161/psb.24737. PubMed DOI PMC

Liu M.-S., Li H.-C., Lai Y.-M., Lo H.-F., Chen L.-F.O. Proteomics and transcriptomics of broccoli subjected to exogenously supplied and transgenic senescence-induced cytokinin for amelioration of postharvest yellowing. J. Proteom. 2013;93:133–144. doi: 10.1016/j.jprot.2013.05.014. PubMed DOI

Chang H., Jones M.L., Banowetz G.M., Clark D.G. Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol. 2003;132:2174–2183. doi: 10.1104/pp.103.023945. PubMed DOI PMC

Brady C.J. Nucleic acid and protein synthesis. In: Noodén L.D., editor. Senescence and Aging in Plants. Academic Press; San Diego, CA, USA: 1988. pp. 147–178.

Taylor C.B., Bariola P.A., DelCardayre S.B., Raines R.T., Green P.J. RNS2: A senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proc. Natl. Acad. Sci. USA. 1993;90:5118–5122. doi: 10.1073/pnas.90.11.5118. PubMed DOI PMC

Hensel L.L., Grbic V., Baumgarten V.A., Bleecker A.B. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell. 1993;5:553–564. doi: 10.1105/tpc.5.5.553. PubMed DOI PMC

Lohman K.N., Gan S., John M.C., Amasino R.M. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol. Plant. 1994;92:322–328. doi: 10.1111/j.1399-3054.1994.tb05343.x. DOI

Drake R., John I., Farrell A., Cooper W., Schuch W., Grierson D. Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant Mol. Biol. 1996;30:755–767. doi: 10.1007/BF00019009. PubMed DOI

Ryu S.B., Wang X. Expression of phospholipase D during castor bean leaf senescence. Plant Physiol. 1995;108:713–719. doi: 10.1104/pp.108.2.713. PubMed DOI PMC

Watanabe A., Hamada K., Yokoi H., Watanabe A. Biphasic and differential expression of cytosolic glutamine synthetase genes of radish during seed germination and senescence of cotyledons. Plant Mol. Biol. 1994;26:1807–1817. doi: 10.1007/BF00019494. PubMed DOI

Guo Y., Gan S.S. Translational researches on leaf senescence for enhancing plant productivity and quality. J. Exp. Bot. 2014;65:3901–3913. doi: 10.1093/jxb/eru248. PubMed DOI

Jordi W., Schapendonk A., Davelaar E., Stoopen G.M., Pot C.S., de Visser R., van Rhijn J.A., Gan S., Amasino R.M. Increased cytokinin levels in transgenic P(SAG12)-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ. 2000;23:279–289. doi: 10.1046/j.1365-3040.2000.00544.x. DOI

Lara M.E.B., Garcia M.-C.G., Fatima T., Ehneβ R., Lee T.K., Proels R., Tanner W., Roitsch T., Lara M.E.B., Garcia M.-C.G., et al. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell. 2004;16:1276–1287. doi: 10.1105/tpc.018929. PubMed DOI PMC

Synková H., Semorádová Š., Schnablová R., Witters E., Hušák M., Valcke R. Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-IPT tobacco during plant ontogeny. Biol. Plant. 2006;50:31–41. doi: 10.1007/s10535-005-0071-0. DOI

Dertinger U., Schaz U., Schulze E.D. Age-dependence of the antioxidative system in tobacco with enhanced glutathione reductase activity or senescence-induced production of cytokinins. Physiol. Plant. 2003;119:19–29. doi: 10.1034/j.1399-3054.2003.00095.x. DOI

Procházková D., Haisel D., Wilhelmová N. Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span. Cell Biochem. Funct. 2008;26:582–590. doi: 10.1002/cbf.1481. PubMed DOI

He P., Osaki M., Takebe M., Shinano T., Wasaki J. Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J. Exp. Bot. 2005;56:1117–1128. doi: 10.1093/jxb/eri103. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Phytohormone and Amino Acid Changes in Cherry Radish as Metabolic Adaptive Response to Arsenic Single and Multi-Contamination

. 2025 Mar 08 ; 15 (3) : . [epub] 20250308

Structure-function relation of cytokinins determines their differential efficiency in mediating tobacco resistance against Pseudomonas syringae

. 2025 Jan-Feb ; 177 (1) : e70028.

Abiotic Stress in Crop Production

. 2023 Apr 01 ; 24 (7) : . [epub] 20230401

Type-A response regulators negatively mediate heat stress response by altering redox homeostasis in Arabidopsis

. 2022 ; 13 () : 968139. [epub] 20220923

Plant hormone cytokinin at the crossroads of stress priming and control of photosynthesis

. 2022 ; 13 () : 1103088. [epub] 20230118

The Resistance of Oilseed Rape Microspore-Derived Embryos to Osmotic Stress Is Associated With the Accumulation of Energy Metabolism Proteins, Redox Homeostasis, Higher Abscisic Acid, and Cytokinin Contents

. 2021 ; 12 () : 628167. [epub] 20210611

Cytokinin N-glucosides: Occurrence, Metabolism and Biological Activities in Plants

. 2020 Dec 28 ; 11 (1) : . [epub] 20201228

Targeting Cytokinin Homeostasis in Rapid Cycling Brassica rapa with Plant Growth Regulators INCYDE and TD-K

. 2020 Dec 25 ; 10 (1) : . [epub] 20201225

Hormopriming to Mitigate Abiotic Stress Effects: A Case Study of N 9-Substituted Cytokinin Derivatives With a Fluorinated Carbohydrate Moiety

. 2020 ; 11 () : 599228. [epub] 20201210

Naturally Occurring and Artificial N9-Cytokinin Conjugates: From Synthesis to Biological Activity and Back

. 2020 May 29 ; 10 (6) : . [epub] 20200529

Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress

. 2020 ; 15 (5) : e0233055. [epub] 20200515

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...