Outdoor air pollution is classified as carcinogenic to humans and exposure to it contributes to increased incidence of various diseases, including cardiovascular, neurological or pulmonary disorders. Vehicle engine emissions represent a significant part of outdoor air pollutants, particularly in large cities with high population density. Considering the potentially negative health impacts of engine emissions exposure, the application of reliable test systems allowing assessment of the biological effects of these pollutants is crucial. The exposure systems should use relevant, preferably multicellular, cell models that are treated with the complete engine exhaust (i.e. a realistic mixture of particles, chemical compounds bound to them and gaseous phase) at the air-liquid interface. The controlled delivery and characterization of chemical and/or particle composition of the exhaust should be possible. In this mini-review we report on such exposure systems that have been developed to date. We focus on a brief description and technical characterization of the systems, and discuss the biological parameters detected following exposure to a gasoline/diesel exhaust. Finally, we summarize and compare findings from the individual systems, including their advantages/limitations.
- MeSH
- benzin analýza toxicita MeSH
- látky znečišťující vzduch analýza toxicita MeSH
- lidé MeSH
- monitorování životního prostředí metody MeSH
- výfukové emise vozidel analýza toxicita MeSH
- vystavení vlivu životního prostředí škodlivé účinky analýza MeSH
- znečištění ovzduší škodlivé účinky analýza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- srovnávací studie MeSH
The aryl hydrocarbon receptor (AhR) transcription factor is activated by polycyclic aromatic hydrocarbons (PAH) and other ligands. Activated AhR binds to dioxin responsive elements (DRE) and initiates transcription of target genes, including the gene encoding prostaglandin endoperoxide synthase 2 (PTGS-2), which is also activated by the transcription factor NF-ĸB. PTGS-2 catalyzes the conversion of arachidonic acid (AA) into prostaglandins, thromboxanes or isoprostanes. 15-F2t-Isoprostane (IsoP), regarded as a universal marker of lipid peroxidation, is also induced by PAH exposure. We investigated the processes associated with lipid peroxidation in human alveolar basal epithelial cells (A549) exposed for 4 h or 24 h to model PAH (benzo[a]pyrene, BaP; 3-nitrobenzanthrone, 3-NBA) and organic extracts from ambient air particulate matter (EOM), collected in two seasons in a polluted locality. Both EOM induced the expression of CYP1A1 and CYP1B1; 24 h treatment significantly reduced PTGS-2 expression. IsoP levels decreased after both exposure periods, while the concentration of AA was not affected. The effects induced by BaP were similar to EOM except for increased IsoP levels after 4 h exposure and elevated AA concentration after 24 h treatment. In contrast, 3-NBA treatment did not induce CYP expression, had a weak effect on PTGS-2 expression, and, similar to BaP, induced IsoP levels after 4 h exposure and AA levels after 24 h treatment. All tested compounds induced the activity of NF-ĸB after the longer exposure period. In summary, our data suggest that EOM, and partly BaP, reduce lipid peroxidation by a mechanism that involves AhR-dependent inhibition of PTGS-2 expression. The effect of 3-NBA on IsoP levels is probably mediated by a different mechanism independent of AhR activation.
- MeSH
- benz(a)anthraceny toxicita MeSH
- benzopyren toxicita MeSH
- buňky A549 MeSH
- cyklooxygenasa 1 metabolismus MeSH
- cytochrom P-450 CYP1A1 metabolismus MeSH
- lidé MeSH
- mutageny toxicita MeSH
- nádorové buněčné linie MeSH
- NF-kappa B metabolismus MeSH
- peroxidace lipidů účinky léků MeSH
- pevné částice toxicita MeSH
- pneumocyty účinky léků MeSH
- polycyklické aromatické uhlovodíky toxicita MeSH
- receptory aromatických uhlovodíků metabolismus MeSH
- transkripční faktory bHLH metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The biological effects induced by complete engine emissions in a 3D model of the human airway (MucilAirTM) and in human bronchial epithelial cells (BEAS-2B) grown at the air-liquid interface were compared. The cells were exposed for one or five days to emissions generated by a Euro 5 direct injection spark ignition engine. The general condition of the cells was assessed by the measurement of transepithelial electrical resistance and mucin production. The cytotoxic effects were evaluated by adenylate kinase (AK) and lactate dehydrogenase (LDH) activity. Phosphorylation of histone H2AX was used to detect double-stranded DNA breaks. The expression of the selected 370 relevant genes was analyzed using next-generation sequencing. The exposure had minimal effects on integrity and AK leakage in both cell models. LDH activity and mucin production in BEAS-2B cells significantly increased after longer exposures; DNA breaks were also detected. The exposure affected CYP1A1 and HSPA5 expression in MucilAirTM. There were no effects of this kind observed in BEAS-2B cells; in this system gene expression was rather affected by the time of treatment. The type of cell model was the most important factor modulating gene expression. In summary, the biological effects of complete emissions exposure were weak. In the specific conditions used in this study, the effects observed in BEAS-2B cells were induced by the exposure protocol rather than by emissions and thus this cell line seems to be less suitable for analyses of longer treatment than the 3D model.
- MeSH
- biologické markery MeSH
- biologické modely * MeSH
- elektrická impedance MeSH
- epitelové buňky účinky léků metabolismus MeSH
- exprese genu MeSH
- lidé MeSH
- muciny biosyntéza MeSH
- respirační sliznice účinky léků metabolismus MeSH
- výfukové emise vozidel toxicita MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- zlomy DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Polycyclic aromatic hydrocarbons (PAHs) may cause lipid peroxidation via reactive oxygen species generation. 15-F2t-isoprostane (IsoP), an oxidative stress marker, is formed from arachidonic acid (AA) by a free-radical induced oxidation. AA may also be converted to prostaglandins (PG) by prostaglandin-endoperoxide synthase (PTGS) induced by NF-κB. We treated human embryonic lung fibroblasts (HEL12469) with benzo[a]pyrene (B[a]P), 3-nitrobenzanthrone (3-NBA) and extractable organic matter (EOM) from ambient air particulate matter <2.5 µm for 4 and 24 h. B[a]P and 3-NBA induced expression of PAH metabolising, but not antioxidant enzymes. The concentrations of IsoP decreased, whereas the levels of AA tended to increase. Although the activity of NF-κB was not detected, the tested compounds affected the expression of prostaglandin-endoperoxide synthase 2 (PTGS2). The levels of prostaglandin E2 (PGE2) decreased following exposure to B[a]P, whereas 3-NBA exposure tended to increase PGE2 concentration. A distinct response was observed after EOM exposure: expression of PAH-metabolising enzymes was induced, IsoP levels increased after 24-h treatment but AA concentration was not affected. The activity of NF-κB increased after both exposure periods, and a significant induction of PTGS2 expression was found following 4-h treatment. Similarly to PAHs, the EOM exposure was associated with a decrease of PGE2 levels. In summary, exposure to PAHs with low pro-oxidant potential results in a decrease of IsoP levels implying 'antioxidant' properties. For such compounds, IsoP may not be a suitable marker of lipid peroxidation.
- MeSH
- aromatické hydroxylasy metabolismus MeSH
- benz(a)anthraceny toxicita MeSH
- benzopyren toxicita MeSH
- cyklooxygenasa 2 metabolismus MeSH
- dinoprost analogy a deriváty biosyntéza metabolismus MeSH
- dinoproston biosyntéza metabolismus MeSH
- fibroblasty účinky léků enzymologie MeSH
- kultivované buňky MeSH
- kyselina arachidonová metabolismus MeSH
- látky znečišťující vzduch toxicita MeSH
- lidé MeSH
- NF-kappa B metabolismus MeSH
- oxidační stres účinky léků MeSH
- peroxidace lipidů účinky léků MeSH
- pevné částice toxicita MeSH
- plíce cytologie účinky léků embryologie enzymologie MeSH
- polycyklické aromatické uhlovodíky toxicita MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Despite the wide application of nanomaterials, toxicity studies of nanoparticles (NP) are often limited to in vitro cell models, and the biological impact of NP exposure in mammals has not been thoroughly investigated. Zinc oxide (ZnO) NPs are commonly used in various consumer products. To evaluate the effects of the inhalation of ZnO NP in mice, we studied splice junction expression in the lungs as a proxy to gene expression changes analysis. Female ICR mice were treated with 6.46 × 104 and 1.93 × 106 NP/cm3 for 3 days and 3 months, respectively. An analysis of differential expression and alternative splicing events in 298 targets (splice junctions) of 68 genes involved in the processes relevant to the biological effects of ZnO NP was conducted using next-generation sequencing. Three days of exposure resulted in the upregulation of IL-6 and downregulation of BID, GSR, NF-kB2, PTGS2, SLC11A2, and TXNRD1 splice junction expression; 3 months of exposure increased the expression of splice junctions in ALDH3A1, APAF1, BID, CASP3, DHCR7, GCLC, GCLM, GSR, GSS, EHHADH, FAS, HMOX-1, IFNγ, NF-kB1, NQO-1, PTGS1, PTGS2, RAD51, RIPK2, SRXN1, TRAF6, and TXNRD1. Alternative splicing of TRAF6 and TXNRD1 was induced after 3 days of exposure to 1.93 × 106 NP/cm3. In summary, we observed changes of splice junction expression in genes involved in oxidative stress, apoptosis, immune response, inflammation, and DNA repair, as well as the induction of alternative splicing in genes associated with oxidative stress and inflammation. Our data indicate the potential negative biological effects of ZnO NP inhalation.
- MeSH
- alternativní sestřih účinky léků MeSH
- aplikace inhalační MeSH
- apoptóza účinky léků MeSH
- buněčná imunita účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- exprese genu účinky léků MeSH
- myši inbrední ICR MeSH
- myši MeSH
- nanočástice toxicita MeSH
- oprava DNA účinky léků MeSH
- oxid zinečnatý toxicita MeSH
- oxidační stres účinky léků MeSH
- plíce metabolismus patologie MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We investigated the toxicity of benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP) and 3-nitrobenzanthrone (3-NBA) in A549 cells. Cells were treated for 4 h and 24 h with: B[a]P (0.1 and 1 μM), 1-NP (1 and 10 μM) and 3-NBA (0.5 and 5 μM). Bulky DNA adducts, lipid peroxidation, DNA and protein oxidation and mRNA expression of CYP1A1, CYP1B1, NQO1, POR, AKR1C2 and COX2 were analyzed. Bulky DNA adducts were induced after both treatment periods; the effect of 1-NP was weak. 3-NBA induced high levels of bulky DNA adducts even after 4-h treatment, suggesting rapid metabolic activation. Oxidative DNA damage was not affected. 1-NP caused protein oxidation and weak induction of lipid peroxidation after 4-h incubation. 3-NBA induced lipid peroxidation after 24-h treatment. Unlike B[a]P, induction of the aryl hydrocarbon receptor, measured as mRNA expression levels of CYP1A1 and CYP1B1, was low after treatment with polycyclic aromatic hydrocarbon (PAH) nitro-derivatives. All test compounds induced mRNA expression of NQO1, POR, and AKR1C2 after 24-h treatment. AKR1C2 expression indicates involvement of processes associated with reactive oxygen species generation. This was supported further by COX2 expression induced by 24-h treatment with 1-NP. In summary, 3-NBA was the most potent genotoxicant, whereas 1-NP exhibited the strongest oxidative properties.
- MeSH
- adukty DNA účinky léků genetika MeSH
- benz(a)anthraceny toxicita MeSH
- benzopyren toxicita MeSH
- buňky A549 MeSH
- cyklooxygenasa 2 genetika MeSH
- cytochrom P-450 CYP1A1 genetika MeSH
- cytochrom P450 CYP1B1 genetika MeSH
- hydroxysteroiddehydrogenasy genetika MeSH
- lidé MeSH
- NAD(P)H dehydrogenasa (chinon) genetika MeSH
- pneumocyty účinky léků metabolismus MeSH
- poškození DNA účinky léků genetika MeSH
- pyreny toxicita MeSH
- systém (enzymů) cytochromů P-450 genetika MeSH
- výfukové emise vozidel toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
ELISA is commonly used for the detection of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of whole body oxidative stress. However, the method has been criticized for high inter-laboratory variability and poor agreement with chromatographic techniques. We performed an inter-laboratory comparison of 8-oxodG assessed in 30 urine samples and a urine spiked with four different concentrations of 8-oxodG by ELISA using standardized experimental conditions, including: sample pre-treatment with solid-phase extraction (SPE), performing analysis using a commercial kit from a single manufacturer and strict temperature control during the assay. We further compared the ELISA results with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and performed tentative identification of compounds that may contribute to the discrepancy between both methods. For all but one participating laboratory (Data 1) we observed consistent ELISA results lying mostly within 1SD of the mean 8-oxodG concentration. Mean 8-oxodG levels assessed by ELISA correlated with the data obtained by HPLC-MS/MS (R=0.679, p<0.001). The correlation improved when Data 1 were excluded from the analysis (R=0.749, p<0.001). We identified three outlying urine samples; one with an ELISA 8-oxodG concentration lower, and two with 8-oxodG levels higher, than those measured by HPLC-MS/MS. Omitting these samples further improved inter-methodology agreement (R=0.869, p<0.001). In the outliers with high 8-oxodG estimates various aromatic and heterocyclic compounds were tentatively identified using gas chromatography-mass spectrometry (GC-MS). Application of authentic standards revealed the presence of saccharides, including d-glucose and d-galactose as putative interfering substances. In summary, assay standardization improved ELISA inter-laboratory agreement, although some variability is still observed. There are still compounds contributing to overestimation of 8-oxodG by ELISA, but only in some urine samples. Thus, despite significant improvement, ELISA still should not be considered a robust alternative to chromatographic techniques.
- MeSH
- biologické markery moč MeSH
- deoxyguanosin analogy a deriváty moč MeSH
- ELISA metody MeSH
- extrakce na pevné fázi MeSH
- lidé MeSH
- oxidační stres genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
We analyzed the ability of particulate matter (PM) and chemicals adsorbed onto it to induce diverse gene expression profiles in subjects living in two regions of the Czech Republic differing in levels and sources of the air pollution. A total of 312 samples from polluted Ostrava region and 154 control samples from Prague were collected in winter 2009, summer 2009 and winter 2010. The highest concentrations of air pollutants were detected in winter 2010 when the subjects were exposed to: PM of aerodynamic diameter <2.5μm (PM2.5) (70 vs. 44.9μg/m(3)); benzo[a]pyrene (9.02 vs. 2.56ng/m(3)) and benzene (10.2 vs. 5.5μg/m(3)) in Ostrava and Prague, respectively. Global gene expression analysis of total RNA extracted from leukocytes was performed using Illumina Expression BeadChips microarrays. The expression of selected genes was verified by quantitative real-time PCR (qRT-PCR). Gene expression profiles differed by locations and seasons. Despite lower concentrations of air pollutants a higher number of differentially expressed genes and affected KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways was found in subjects from Prague. In both locations immune response pathways were affected, in Prague also neurodegenerative diseases-related pathways. Over-representation of the latter pathways was associated with the exposure to PM2.5. The qRT-PCR analysis showed a significant decrease in expression of APEX, ATM, FAS, GSTM1, IL1B and RAD21 in subjects from Ostrava, in a comparison of winter 2010 and summer 2009. In Prague, an increase in gene expression was observed for GADD45A and PTGS2. In conclusion, high concentrations of pollutants in Ostrava were not associated with higher number of differentially expressed genes, affected KEGG pathways and expression levels of selected genes. This observation suggests that chronic exposure to air pollution may result in reduced gene expression response with possible negative health consequences.
- MeSH
- dospělí MeSH
- látky znečišťující vzduch toxicita MeSH
- leukocyty metabolismus patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- regulace genové exprese * MeSH
- roční období * MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- stanovení celkové genové exprese MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
In order to evaluate the ability of a representative polycyclic aromatic hydrocarbon (PAH) and PAH-containing complex mixtures to induce double strand DNA breaks (DSBs) and repair of damaged DNA in human embryonic lung fibroblasts (HEL12469 cells), we investigated the effect of benzo[a]pyrene (B[a]P) and extractable organic matter (EOM) from ambient air particles <2.5μm (PM2.5) on nonhomologous DNA end joining (NHEJ) and induction of stable chromosome aberrations (CAs). PM2.5 was collected in winter and summer 2011 in two Czech cities differing in levels and sources of air pollutants. The cells were treated for 24h with the following concentrations of tested chemicals: B[a]P: 1μM, 10μM, 25μM; EOMs: 1μg/ml, 10μg/ml, 25μg/ml. We tested several endpoints representing key steps leading from DSBs to the formation of CAs including histone H2AX phosphorylation, levels of proteins Ku70, Ku80 and XRCC4 participating in NHEJ, in vitro ligation activity of nuclear extracts of the HEL12469 cells and the frequency of stable CAs assessed by whole chromosome painting of chromosomes 1, 2, 4, 5, 7 and 17 using fluorescence in situ hybridization. Our results show that 25μM of B[a]P and most of the tested doses of EOMs induced DSBs as indicated by H2AX phosphorylation. DNA damage was accompanied by induction of XRCC4 expression and an increased frequency of CAs. Translocations most frequently affected chromosome 7. We observed only a weak induction of Ku70/80 expression as well as ligation activity of nuclear extracts. In summary, our data suggest the induction of DSBs and NHEJ after treatment of human embryonic lung fibroblasts with B[a]P and complex mixtures containing PAHs.
- MeSH
- antigeny jaderné genetika metabolismus MeSH
- benzopyren toxicita MeSH
- buněčné linie MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- embryo savčí metabolismus patologie MeSH
- fibroblasty metabolismus patologie MeSH
- fosforylace účinky léků genetika MeSH
- histony genetika metabolismus MeSH
- látky znečišťující životní prostředí toxicita MeSH
- lidé MeSH
- lidské chromozomy genetika metabolismus MeSH
- obnova měst MeSH
- oprava DNA spojením konců účinky léků genetika MeSH
- pevné částice MeSH
- plíce metabolismus patologie MeSH
- translokace genetická účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Populations living in industrialised regions are at higher risk of a number of diseases and shortened life span. These negative effects are primarily brought about by damage to cells and macromolecules caused by environmental pollutants. In this study, we analysed the effect of exposure to benzo[a]pyrene, a particulate matter of aerodynamic diameter < 2.5 µm (PM2.5), and benzene on oxidative stress markers [including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 15-F(2t)-isoprostane (15-F2t-IsoP) and protein carbonyls] and cytogenetic parameters (stable and unstable chromosomal aberrations). The samples were collected from subjects living in the Ostrava region characterised by very high levels of air pollution and in Prague with comparatively lower concentrations of pollutants in three seasons (winter 2009, summer 2009 and winter 2010). Despite several-fold higher concentrations of air pollutants in the Ostrava region, the levels of stable aberrations (genomic frequency of translocations per 100 cells, percentage of aberrant cells and frequency of acentric fragments) were mostly comparable in both locations. The frequency of unstable aberrations measured as the number of micronuclei was unexpectedly significantly lower in the Ostrava region subjects in both seasons of 2009. Urinary excretion of 8-oxodG did not differ between locations in either season. Lipid peroxidation measured as levels of 15-F2t-IsoP in blood plasma was elevated in the Ostrava subjects sampled in 2009. Protein oxidation was higher in Prague samples collected in summer 2009. Multivariate analyses conducted separately in subjects from Prague and Ostrava showed a negative association between the frequency of micronuclei and concentrations of benzo[a]pyrene and PM2.5 in both regions. A positive relationship was observed between lipid peroxidation and air pollution; protein oxidation seems to be positively affected by PM2.5 in both regions.
- MeSH
- benzopyren toxicita MeSH
- biologické markery analýza krev moč MeSH
- chromozomální aberace * MeSH
- deoxyguanosin analogy a deriváty moč MeSH
- dospělí MeSH
- isoprostany krev MeSH
- karbonylace proteinů MeSH
- látky znečišťující vzduch škodlivé účinky analýza MeSH
- lidé středního věku MeSH
- lidé MeSH
- lymfocyty účinky léků MeSH
- multivariační analýza MeSH
- oxidační stres účinky léků MeSH
- peroxidace lipidů účinky léků MeSH
- pevné částice škodlivé účinky MeSH
- velkoměsta MeSH
- znečištění ovzduší škodlivé účinky analýza MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- velkoměsta MeSH