BACKGROUND: Somatic and germline genetic alterations are significant drivers of cancer. Increasing integration of new technologies which profile these alterations requires timely, equitable and high-quality genetic counselling to facilitate accurate diagnoses and informed decision-making by patients and their families in preventive and clinical settings. This article aims to provide an overview of genetic counselling legislation and practice across European Union (EU) Member States to serve as a foundation for future European recommendations and action. METHODS: National legislative databases of all 27 Member States were searched using terms relevant to genetic counselling, translated as appropriate. Interviews with relevant experts from each Member State were conducted to validate legislative search results and provide detailed insights into genetic counselling practice in each country. RESULTS: Genetic counselling is included in national legislative documents of 22 of 27 Member States, with substantial variation in legal mechanisms and prescribed details (i.e. the 'who, what, when and where' of counselling). Practice is similarly varied. Workforce capacity (25 of 27 Member States) and genetic literacy (all Member States) were common reported barriers. Recognition and/or better integration of genetic counsellors and updated legislation and were most commonly noted as the 'most important change' which would improve practice. CONCLUSIONS: This review highlights substantial variability in genetic counselling across EU Member States, as well as common barriers notwithstanding this variation. Future recommendations and action should focus on addressing literacy and capacity challenges through legislative, regulatory and/or strategic approaches at EU, national, regional and/or local levels.
- MeSH
- European Union * MeSH
- Genetic Counseling * legislation & jurisprudence MeSH
- Genetic Testing legislation & jurisprudence MeSH
- Humans MeSH
- Neoplasms * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.The European Stop Kinase Inhibitors (EURO-SKI) study is the largest clinical trial for investigating the cessation of tyrosine kinase inhibitors (TKIs) in patients with chronic myeloid leukemia in stable deep molecular remission (DMR). Among 728 patients, 434 patients (61%; 95% CI, 57 to 64) remained in major molecular response (MMR) at 6 months and 309 patients of 678 (46%; 95% CI, 42 to 49) at 36 months. Duration of TKI treatment and DMR before TKI stop were confirmed as significant factors for the prediction of MMR loss at 6 months. In addition, the type of BCR::ABL1 transcript was identified as a prognostic factor. For late MMR losses after 6 months, TKI treatment duration, percentage of blasts in peripheral blood, and platelet count at diagnosis were significant factors in multivariate analysis. For the entire study period of 36 months, multiple logistic regression models confirmed duration of treatment, blasts, and transcript type as independent factors for MMR maintenance. In addition to the duration of treatment, transcript type as well as blasts in peripheral blood at diagnosis should be considered as important factors to predict treatment-free remission.
- MeSH
- Fusion Proteins, bcr-abl genetics antagonists & inhibitors MeSH
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive * drug therapy genetics MeSH
- Adult MeSH
- Imatinib Mesylate therapeutic use MeSH
- Remission Induction * MeSH
- Protein Kinase Inhibitors * therapeutic use MeSH
- Tyrosine Kinase Inhibitors MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Prognosis MeSH
- Pyrimidines therapeutic use MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Geographicals
- Europe MeSH
PURPOSE: To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS: We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS: We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 × 10-2). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION: These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.
- MeSH
- Adult MeSH
- Genetic Predisposition to Disease MeSH
- Internationality MeSH
- Middle Aged MeSH
- Humans MeSH
- Breast Neoplasms, Male genetics MeSH
- Pancreatic Neoplasms genetics MeSH
- Ovarian Neoplasms genetics MeSH
- Neoplasms genetics MeSH
- Fanconi Anemia Complementation Group N Protein genetics MeSH
- Risk MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Age Factors MeSH
- Germ-Line Mutation MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Pathogenic sequence variants (PSV) in BRCA1 or BRCA2 (BRCA1/2) are associated with increased risk and severity of prostate cancer. We evaluated whether PSVs in BRCA1/2 were associated with risk of overall prostate cancer or high grade (Gleason 8+) prostate cancer using an international sample of 65 BRCA1 and 171 BRCA2 male PSV carriers with prostate cancer, and 3,388 BRCA1 and 2,880 BRCA2 male PSV carriers without prostate cancer. PSVs in the 3' region of BRCA2 (c.7914+) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001-c.7913 [HR = 1.78; 95% confidence interval (CI), 1.25-2.52; P = 0.001], as well as elevated risk of Gleason 8+ prostate cancer (HR = 3.11; 95% CI, 1.63-5.95; P = 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR = 2.83; 95% CI, 1.71-4.68; P = 0.00004) and elevated risk of Gleason 8+ prostate cancer (HR = 4.95; 95% CI, 2.12-11.54; P = 0.0002). No genotype-phenotype associations were detected for PSVs in BRCA1. These results demonstrate that specific BRCA2 PSVs may be associated with elevated risk of developing aggressive prostate cancer. SIGNIFICANCE: Aggressive prostate cancer risk in BRCA2 mutation carriers may vary according to the specific BRCA2 mutation inherited by the at-risk individual.
- MeSH
- Adult MeSH
- Genetic Predisposition to Disease * MeSH
- Genetic Association Studies MeSH
- Genomics methods MeSH
- Heterozygote MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Mutation * MeSH
- Prostatic Neoplasms genetics pathology MeSH
- Prognosis MeSH
- BRCA1 Protein genetics MeSH
- BRCA2 Protein genetics MeSH
- Risk Factors MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Germline protein truncating variants (PTVs) in the FANCM gene have been associated with a 2-4-fold increased breast cancer risk in case-control studies conducted in different European populations. However, the distribution and the frequency of FANCM PTVs in Europe have never been investigated. In the present study, we collected the data of 114 European female breast cancer cases with FANCM PTVs ascertained in 20 centers from 13 European countries. We identified 27 different FANCM PTVs. The p.Gln1701* PTV is the most common PTV in Northern Europe with a maximum frequency in Finland and a lower relative frequency in Southern Europe. On the contrary, p.Arg1931* seems to be the most common PTV in Southern Europe. We also showed that p.Arg658*, the third most common PTV, is more frequent in Central Europe, and p.Gln498Thrfs*7 is probably a founder variant from Lithuania. Of the 23 rare or unique FANCM PTVs, 15 have not been previously reported. We provide here the initial spectrum of FANCM PTVs in European breast cancer cases.
- Publication type
- Journal Article MeSH
BACKGROUND: Tyrosine kinase inhibitors (TKIs) have improved the survival of patients with chronic myeloid leukaemia. Many patients have deep molecular responses, a prerequisite for TKI therapy discontinuation. We aimed to define precise conditions for stopping treatment. METHODS: In this prospective, non-randomised trial, we enrolled patients with chronic myeloid leukaemia at 61 European centres in 11 countries. Eligible patients had chronic-phase chronic myeloid leukaemia, had received any TKI for at least 3 years (without treatment failure according to European LeukemiaNet [ELN] recommendations), and had a confirmed deep molecular response for at least 1 year. The primary endpoint was molecular relapse-free survival, defined by loss of major molecular response (MMR; >0·1% BCR-ABL1 on the International Scale) and assessed in all patients with at least one molecular result. Secondary endpoints were a prognostic analysis of factors affecting maintenance of MMR at 6 months in learning and validation samples and the cost impact of stopping TKI therapy. We considered loss of haematological response, progress to accelerated-phase chronic myeloid leukaemia, or blast crisis as serious adverse events. This study presents the results of the prespecified interim analysis, which was done after the 6-month molecular relapse-free survival status was known for 200 patients. The study is ongoing and is registered with ClinicalTrials.gov, number NCT01596114. FINDINGS: Between May 30, 2012, and Dec 3, 2014, we assessed 868 patients with chronic myeloid leukaemia for eligibility, of whom 758 were enrolled. Median follow-up of the 755 patients evaluable for molecular response was 27 months (IQR 21-34). Molecular relapse-free survival for these patients was 61% (95% CI 57-64) at 6 months and 50% (46-54) at 24 months. Of these 755 patients, 371 (49%) lost MMR after TKI discontinuation, four (1%) died while in MMR for reasons unrelated to chronic myeloid leukaemia (myocardial infarction, lung cancer, renal cancer, and heart failure), and 13 (2%) restarted TKI therapy while in MMR. A further six (1%) patients died in chronic-phase chronic myeloid leukaemia after loss of MMR and re-initiation of TKI therapy for reasons unrelated to chronic myeloid leukaemia, and two (<1%) patients lost MMR despite restarting TKI therapy. In the prognostic analysis in 405 patients who received imatinib as first-line treatment (learning sample), longer treatment duration (odds ratio [OR] per year 1·14 [95% CI 1·05-1·23]; p=0·0010) and longer deep molecular response durations (1·13 [1·04-1·23]; p=0·0032) were associated with increasing probability of MMR maintenance at 6 months. The OR for deep molecular response duration was replicated in the validation sample consisting of 171 patients treated with any TKI as first-line treatment, although the association was not significant (1·13 [0·98-1·29]; p=0·08). TKI discontinuation was associated with substantial cost savings (an estimated €22 million). No serious adverse events were reported. INTERPRETATION: Patients with chronic myeloid leukaemia who have achieved deep molecular responses have good molecular relapse-free survival. Such patients should be considered for TKI discontinuation, particularly those who have been in deep molecular response for a long time. Stopping treatment could spare patients from treatment-induced side-effects and reduce health expenditure. FUNDING: ELN Foundation and France National Cancer Institute.
- MeSH
- Antineoplastic Agents administration & dosage adverse effects MeSH
- Fusion Proteins, bcr-abl antagonists & inhibitors genetics MeSH
- Time Factors MeSH
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive drug therapy genetics mortality pathology MeSH
- Progression-Free Survival MeSH
- Adult MeSH
- Risk Assessment MeSH
- Protein Kinase Inhibitors administration & dosage adverse effects MeSH
- Clinical Decision-Making MeSH
- Middle Aged MeSH
- Humans MeSH
- Biomarkers, Tumor antagonists & inhibitors genetics MeSH
- Polymerase Chain Reaction MeSH
- Predictive Value of Tests MeSH
- Prospective Studies MeSH
- Risk Factors MeSH
- Drug Administration Schedule MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations.
- MeSH
- Databases, Genetic MeSH
- Internationality * MeSH
- Humans MeSH
- Mutation genetics MeSH
- BRCA1 Protein genetics MeSH
- BRCA2 Protein genetics MeSH
- Family MeSH
- Geography MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10(-20)), ER-negative BC (P=1.1 × 10(-13)), BRCA1-associated BC (P=7.7 × 10(-16)) and triple negative BC (P-diff=2 × 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10(-3)) and ABHD8 (P<2 × 10(-3)). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3'-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
- MeSH
- Alleles * MeSH
- Asian People genetics MeSH
- Genome-Wide Association Study MeSH
- Black People genetics MeSH
- Genetic Predisposition to Disease * MeSH
- Genotype MeSH
- Polymorphism, Single Nucleotide * MeSH
- Humans MeSH
- Chromosomes, Human, Pair 19 genetics MeSH
- RNA, Messenger genetics metabolism MeSH
- Breast Neoplasms genetics MeSH
- Ovarian Neoplasms genetics MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Adaptive Clinical Trial MeSH
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.
- MeSH
- Estrogen Receptor alpha genetics metabolism MeSH
- Gene Expression MeSH
- Phenotype MeSH
- Genetic Predisposition to Disease MeSH
- Genetic Association Studies MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Chromosomes, Human, Pair 6 genetics MeSH
- Breast Neoplasms genetics metabolism MeSH
- Cell Cycle Proteins genetics metabolism MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Risk Factors MeSH
- Base Sequence MeSH
- Carrier Proteins genetics metabolism MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
IMPORTANCE: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE: To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS: Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19,581 carriers of BRCA1 mutations and 11,900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk. EXPOSURES: Mutations of BRCA1 or BRCA2. MAIN OUTCOMES AND MEASURES: Breast and ovarian cancer risks. RESULTS: Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10(-6)), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1'; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% CI, 1.69-3.16; P = .00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% CI, 0.44-0.60; P = 6 × 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% CI, 0.41-0.80; P = .001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers. CONCLUSIONS AND RELEVANCE: Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.
- MeSH
- Adult MeSH
- Genetic Predisposition to Disease * MeSH
- Genes, BRCA1 * MeSH
- Genes, BRCA2 * MeSH
- Heterozygote MeSH
- Middle Aged MeSH
- Humans MeSH
- Mutation * MeSH
- Breast Neoplasms genetics MeSH
- Ovarian Neoplasms genetics MeSH
- Nucleotides MeSH
- Risk Factors MeSH
- Age of Onset MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Observational Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH