Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
Infekce spojené s tvorbou biofilmu (BRI) jsou zásadním problémem pro zdravotnictví v Evropě i v celosvětovém měřítku. BRI se vyznačují chronickým chováním nebo častými recidivami, rezistencí na antibiotika, komplexní a dlouhodobou léčbou, špatnou prognózou, vysokými sociálními a ekonomickými náklady a obtížnou diagnózou. Požadavky na implantabilní biomedicínské mikrosystémy, které se používají pro včasné odhalení a diagnostiku nemocí, se zvyšují a vedou k jejich intenzivnímu výzkumu a inovacím. Existuje však nedostatek spolehlivých implantabilních senzorů pro včasnou detekci nástupu bakteriální infekce. Na základě předchozích znalostí členů výzkumných týmů a předběžných zkoušek bude navržen nový typ implantabilních senzorů založených buď na fyzikálních, nebo chemických principech včasné detekce vzniku biofilmu.; Biofilm-related infections (BRI) are an overwhelming issue for health care systems in Europe and worldwide. BRIs are characterized by a chronic behavior or frequent recurrences, antibiotic resistance, complex and prolonged treatment, poor prognosis, high social and economical costs and difficult diagnosis. Demand in implantable biomedical microsystems, which are used for early detection and diagnosis of diseases is increased and lead to intensive research and innovation in such area. However, there a lack of reliable implantable sensors for detection of onset of bacterial infection. Based on the previous knowledge of research team members and preliminary tests, we will design new type of implantable sensors based either on physical or chemical principles of early biofilm detection.
- Klíčová slova
- detekce biofilmu, implantable biosensors, detection of colonization, detekce infekce, detection of infection, implantovatelný biosenzory,
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR
BACKGROUND: The diagnosis of joint replacement infection is a difficult clinical challenge that often occurs when the implant cannot be salvaged. We hypothesize that the pH value of synovial fluid could be an important indicator of the inflammatory status of the joint. However, in the literature, there is a lack of data on the pH changes in hip and knee joint replacements and their relation to infection and implant failure. In this study, we aimed to measure the pH levels of synovial fluid in patients with hip and knee joint replacements. We also investigated the potential of pH measurement as a diagnostic tool for joint replacement infection. In this study, we recorded the pH values to be 7.55 and 7.46 in patients where Pseudomonas aeruginosa was identified as the cause of the prosthetic joint infection. We attribute this to the different environments created by this specific bacterium. In other cases where the pH was higher, chronic mitigated infections were diagnosed, caused by strains of Staphylococcus aureus, Streptococcus agalactiase, and coagulase negative staphylococcus. MATERIALS AND METHODS: In our cohort of 155 patients with implanted hip (THA; n = 85) or knee (TKA; n = 70) joint replacements, we conducted a prospective study with a pH measurement. Out of the whole cohort, 44 patients had confirmed joint replacement infection (28.4%) (44/155). In 111 patients, infection was ruled out (71.6%) (111/155). Joint replacement infection was classified according to the criteria of the Musculoskeletal Infection Society (MSIS) from 2018. Based on the measured values, we determined the cut-off level for the probability of ongoing inflammation. We also determined the sensitivity and specificity of the measurement. RESULTS: The group of patients with infection (n = 44) had a significantly lower synovial fluid pH (pH = 6.98 ± 0.48) than the group of patients with no infection (n = 111, pH = 7.82 ± 0.29, p < 0.001). The corresponding median pH values were 7.08 for the patients with infection and 7.83 for the patients with no infection. When we determined the cut-off level of pH 7.4, the sensitivity level of infected replacements was 88.6%, and the specificity level of the measurement was 95.5%. The predictive value of a positive test was 88.6%, and the predictive value of a negative test was 95.5%. CONCLUSIONS: Our results confirm that it is appropriate to include a pH measurement in the diagnostic spectrum of hip and knee replacements. This diagnostic approach has the potential to provide continuous in vivo feedback, facilitated by specialized biosensors. The advantage of this method is the future incorporation of a pH-detecting sensor into intelligent knee and hip replacements that will assess pH levels over time. By integrating these biosensors into intelligent implants, the early detection of joint replacement infections could be achieved, enhancing proactive intervention strategies.
- Publikační typ
- časopisecké články MeSH
Zinc (Zn) alloys seem to be promising candidates for application in orthopaedic or cardiovascular medical implants. In this area, high standards are required regarding the biocompatibility as well as excellent mechanical and tailored degradation properties. In the presented study, a novel Zn-0.8Mg-0.2Sr (wt%) alloy has been fabricated by the combination of casting, homogenization annealing and extrusion at 200 °C. As a consequence of its fine-grained homogenous microstructure, the prepared material is characterized by an excellent combination of tensile yield strength, ultimate tensile strength and elongation corresponding to 244 MPa, 324 MPa and 20% respectively. The in vitro corrosion rates of the Zn-0.8Mg-0.2Sr alloy in the physiological solution and the simulated body fluid were 244 μm/a and 69.8 μm/a, respectively. Furthermore, an extract test revealed that Zn-0.8Mg-0.2Sr extracts diluted to 25% had no adverse effects towards L929 fibroblasts, TAg periosteal cells and Saos-2 osteoblasts. Moreover, the Zn-0.8Mg-0.2Sr surface showed effective inhibition of initial Streptococcus gordonii adhesion and biofilm formation. These results indicated the Zn-0.8Mg-0.2Sr alloy, which has superior mechanical properties, might be a promising candidate for materials used for load-bearing applications.
Aim: To evaluate the impact of a nanostructured surface created on β-titanium alloy, Ti-36Nb-6Ta, on the growth and differentiation of human mesenchymal stem cells. Materials & methods: The nanotubes, with average diameters 18, 36 and 46 nm, were prepared by anodic oxidation. Morphology, hydrophilicity and mechanical properties of the nanotube layers were characterized. The biocompatibility and osteogenic potential of the nanostructured surfaces were established using various in vitro assays, scanning electron microscopy and confocal microscopy. Results: The nanotubes lowered elastic modulus close to that of bone, positively influenced cell adhesion, improved ALP activity, synthesis of type I collagen and osteocalcin expression, but diminished early cell proliferation. Conclusion: Nanostructured Ti-36Nb-6Ta with nanotube diameters 36 nm was the most promising material for bone implantation.
The impact of four pre-treatment techniques on the surface morphology and chemistry, residual stress, mechanical properties, corrosion resistance in a physiological saline solution and cell colonization of commercially pure titanium is examined in detail. Mechanical polishing, electrochemical etching, chemical etching in Kroll's reagent, and ion sputter etching with argon ions were applied. Surface morphologies reflect the nature of surface layer removal. Significant roughening of the surface and a characteristic microtopology become apparent as a result of the sensitivity of chemical and ion sputter etching to the grain orientation. The hardness in the near surface region was controlled by the amount of residual stress. Etching of the stressed surface layer led to a reduction in residual stress and surface hardness. A compact passivation layer composed of TiO, TiO2 and Ti2O3 native oxides imparted high corrosion resistance to the surface after mechanical polishing, chemical and electrochemical etching. The ion sputter etched surface showed substantially reduced corrosion resistance, where the corrosion process was controlled by electron transfer. The specific topology affected the adhesion of the cell to the surface rather than the cell area coverage. The cell area coverage increased with the corrosion stability of the surface.
- MeSH
- buněčné linie MeSH
- elektrochemické techniky MeSH
- koroze MeSH
- lidé MeSH
- oxidy chemie MeSH
- povrchové vlastnosti MeSH
- testování materiálů MeSH
- titan chemie MeSH
- tvrdost MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
External fixators of serious fractures could be an attractive substrate on which microorganisms can accumulate. Therefore, this study aimed to develop a suitable method for enabling the simulation of a real situation when osteosynthetic fixation material is open for the potential threat of bacterial attack. Agar-based media represented human tissue, and the metallic pin characterized the screw in the fixation. Various types of agar, supplements, and contamination strategy by Staphylococcus aureus were tested. The influence of the initial bacterial concentration was also examined. Surfaces were observed by scanning electron microscopy (SEM), and all results were compared. Brain Heart Infusion Agar with the Egg Yolk Tellurite Emulsion was established in a transparent test tube as a suitable system for enabling the good interpretability of bacterial contamination in the pin's surroundings. Pin contamination has been found to be an appropriate approach for testing microbial growth, rather than agar surface contamination, which distorted obtained results. A lower initial colony forming units (CFU) provided better clarity of the test. SEM observation of the pin surface was comparable with the visual evaluations in the test tubes. Results were assembled for positive and negative control samples as well. Screening method for the most common bacteria S. aureus has been standardized and developed. This experimental setup could also be a useful tool for surface modification with antibacterial properties testing.
- MeSH
- antibakteriální látky farmakologie MeSH
- biofilmy účinky léků růst a vývoj MeSH
- externí fixátory mikrobiologie MeSH
- kontaminace zdravotnického vybavení * MeSH
- kultivační média MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací MeSH
- počet mikrobiálních kolonií MeSH
- Staphylococcus aureus účinky léků růst a vývoj ultrastruktura MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Titanium biomaterials are widely used in the medical field due to their biocompatibility and excellent corrosion and mechanical resistance. However, these materials have no antibacterial properties. To obtain an antibacterial active surface, a nanostructure of Ti6Al4V alloy was created. This specific nanostructure contained nanotubes and micro-cavities and was used as a substrate for silver anchoring. The electrochemical approach to silver reduction was studied. It is a common approach for silver deposition and in this work, inhomogeneities in the nanostructure were used as a preferential area for silver localisation. The galvanostatic regimen of deposition allowed for a technically quantitative process and the required silver placement. The experimental conditions used enabled testing and silver dissolution rate evaluation within a reasonable time span. Based on the corrosion and analytical results (EDS, XPS and ICP-MS), a two-phase silver release mechanism was confirmed. The openings of the individual nanotubes were filled with silver nanoparticles, whose release was relatively fast. By contrast, the silver anchored inside the cavities allowed the silver to release gradually. Antibacterial efficiency against Staphylococcus aureus and Escherichia coli was successfully demonstrated. Cytotoxicity testing with murine fibroblasts showed cell metabolic activity far above the normative limit of 70%.
- MeSH
- antibakteriální látky aplikace a dávkování chemie farmakologie MeSH
- biokompatibilní materiály chemie MeSH
- buněčné linie MeSH
- Escherichia coli účinky léků MeSH
- infekce vyvolané Escherichia coli farmakoterapie MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- myši MeSH
- nanostruktury chemie MeSH
- protézy a implantáty MeSH
- stafylokokové infekce farmakoterapie MeSH
- Staphylococcus aureus účinky léků MeSH
- stříbro aplikace a dávkování chemie farmakologie MeSH
- titan chemie MeSH
- uvolňování léčiv MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
3D printing seems to be the technology of the future for the preparation of metallic implants. For such applications, corrosion behaviour is pivotal. However, little is published on this topic and with inconsistent results. Therefore, we carried out a complex study in which we compared two techniques of the 3D printing technology - selective laser melting and electron beam melting. The corrosion behaviour was studied in physiological solution by standard electrochemical techniques and susceptibility to localised corrosion was estimated too. All samples showed typical passive behaviour. Localised corrosion was shown to be possible on the original as-printed surfaces. Corrosion experiments were repeated tree times. To reveal possible negative effects of 3D printing on cytocompatibility, direct in vitro tests were performed with U-2 OS cells. The cells showed good viability and proliferation, but their growth was impeded by surface unevenness. Our results suggest that both techniques are suitable for implants production. Statistical evaluation was performed by ANOVA followed by Tukey's test.
- MeSH
- 3D tisk * MeSH
- koroze MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- testování materiálů * MeSH
- titan * chemie farmakologie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Porous structures, manufactured of a biocompatible metal, mimicking human bone structure are the future of orthopedic implantology. Fully porous materials, however, suffer from certain drawbacks. To overcome these, gradient in structure can be prepared. With gradient in porosity mechanical properties can be optimized to an appropriate value, implant can be attributed a similar gradient macrostructure as bone, tissue adhesion may be promoted and also various modification with organic or inorganic substances are possible. In this study, additive technology selective laser melting (SLM) was used to produce three types of gradient porosity model specimens of titanium alloy Ti-6Al-4V. As this technology has the potential to prepare complex structures in the near-net form, to control porosity, pore size and shape, it represents a promising option. The first part of the research work was focused on the characterization of the material itself in the as-produced state, only with heat treatment applied. The second part dealt with the influence of porosity on mechanical properties. The study has shown SLM brings significant changes in the surface chemistry. Despite this finding, titanium alloy retained its cytocompatibility, as it was outlined by in vitro tests with U-2 OS cells. With introduced porosity yield strength, ultimate strength and stiffness showed linear decrease, both in tension and compression. With respect to the future use in the form of orthopedic implant, especially reduction in Young's modulus down to the human bone value (30.5±2GPa) is very appreciated as the stress-shielding effect followed by possible implant loosening is limited.
Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.
- MeSH
- fotoelektronová spektroskopie MeSH
- lasery * MeSH
- lidé MeSH
- modul pružnosti účinky léků MeSH
- nádorové buněčné linie MeSH
- nerezavějící ocel farmakologie MeSH
- pevnost v tahu účinky léků MeSH
- poréznost MeSH
- povrchové vlastnosti MeSH
- testování materiálů metody MeSH
- tvar buňky MeSH
- železo farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH