The FGF signaling pathway plays an important role in the regulation of limb development, controlling cell migration, proliferation, differentiation, and apoptosis. Sprouty proteins act as antagonists of the FGF pathway and control the extent of FGF signaling as part of a negative feedback loop. Sprouty2/4 deficient mice evince defects in endochondral bone formation and digit patterning in their forelimbs, with pathogenesis recently related to ciliopathies. To understand the mechanisms behind these pathologies, the limb defects in Sprouty2+/-;Sprouty4-/- male and female mice were characterized and correlated to the dynamic expression patterns of Sprouty2 and Sprouty4, and the impact on the main signaling centers of the limb bud was assessed. Sprouty2 and Sprouty4 exhibited dynamic expressions during limb development. Interestingly, despite similar expression patterns in all limbs, the hindlimbs did not evince any obvious alterations in development, while the forelimbs showed consistent phenotypes of variable severity. Prenatally as well as postnatally, the left forelimb was significantly more severely affected than the right one. A broad variety of pathologies was present in the autopodium of the forelimb, including changes in digit number, size, shape, and number of bones, hand clefts, and digit fusions. Ectopic ossification of bones and abnormal bone fusions detected in micro-CT scans were frequently observed in the digital as well as in the carpal and metacarpal areas. Sprouty2+/-;Sprouty4-/- limb buds showed patchy loss of Fgf8 expression in the apical ectodermal ridge, and a loss of tissue underlying these regions. The zone of polarizing activity was also impacted, with lineage analysis highlighting a change in the contribution of Sonic hedgehog expressing cells. These findings support the link between Sproutys and Hedgehog signaling during limb development and highlight the importance of Sprouty2 and Sprouty4 in controlling early signaling centers in the limb.
- Publikační typ
- časopisecké články MeSH
Primary cilia are cellular surface projections enriched in receptors and signaling molecules, acting as signaling hubs that respond to stimuli. Malfunctions in primary cilia have been linked to human diseases, including retinopathies and ocular defects. Here, we focus on TMEM107, a protein localized to the transition zone of primary cilia. TMEM107 mutations were found in patients with Joubert and Meckel-Gruber syndromes. A mouse model lacking Tmem107 exhibited eye defects such as anophthalmia and microphthalmia, affecting retina differentiation. Tmem107 expression during prenatal mouse development correlated with phenotype occurrence, with enhanced expression in differentiating retina and optic stalk. TMEM107 deficiency in retinal organoids resulted in the loss of primary cilia, down-regulation of retina-specific genes, and cyst formation. Knocking out TMEM107 in human ARPE-19 cells prevented primary cilia formation and impaired response to Smoothened agonist treatment because of ectopic activation of the SHH pathway. Our data suggest TMEM107 plays a crucial role in early vertebrate eye development and ciliogenesis in the differentiating retina.
- MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- myši MeSH
- polycystická choroba ledvin * genetika MeSH
- poruchy ciliární motility * genetika metabolismus MeSH
- retina metabolismus MeSH
- retinopathia pigmentosa * metabolismus MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Ameloblastic carcinoma and metastasising ameloblastoma are rare epithelial odontogenic tumours with aggressive features. Distinguishing between these two lesions is often clinically difficult but necessary to predict tumour behaviour or to plan future therapy. Here, we provide a brief review of the literature available on these two types of lesions and present a new case report of a young man with an ameloblastoma displaying metastatic features. We also use this case to illustrate the similarities and differences between these two types of tumours and the difficulties of their differential diagnosis. CASE PRESENTATION: Our histopathological analyses uncovered a metastasising tumour with features of ameloblastic carcinoma, which developed from the ameloblastoma. We profiled the gene expression of Wnt pathway members in ameloblastoma sample of this patient, because multiple molecules of this pathway are involved in the establishing of cell polarity, cell migration or for epithelial-mesenchymal transition during tumour metastasis to evaluate features of tumor behaviour. Indeed, we found upregulation of several cell migration-related genes in our patient. Moreover, we uncovered somatic mutation BRAF p.V600E with known pathological role in cancerogenesis and germline heterozygous FANCA p.S858R mutation, whose interpretation in this context has not been discussed yet. CONCLUSIONS: In conclusion, we have uncovered a unique case of ameloblastic carcinoma associated with an alteration of Wnt signalling and the presence of BRAF mutation. Development of harmful state of our patient might be also supported by the germline mutation in one FANCA allele, however this has to be confirmed by further analyses.
- MeSH
- ameloblastom * genetika diagnóza MeSH
- karcinom * patologie MeSH
- lidé MeSH
- mutace MeSH
- odontogenní nádory * diagnóza genetika MeSH
- protoonkogenní proteiny B-raf genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Carcinomas of the oral cavity and oropharynx belong among the ten most common malignancies in the human population. The prognosis of head and neck squamous cell carcinoma (HNSCC) is determined by the degree of invasiveness of the primary tumor and by the extent of metastatic spread into regional and distant lymph nodes. Moreover, the level of the perineural invasion itself associates with tumor localization, invasion's extent, and the presence of nodal metastases. Here, we summarize the current knowledge about different aspects of epigenetic changes, which can be associated with HNSCC while focusing on perineural invasion (PNI). We review epigenetic modifications of the genes involved in the PNI process in HNSCC from the omics perspective and specific epigenetic modifications in OSCC or other neurotropic cancers associated with perineural invasion. Moreover, we summarize DNA methylation status of tumor-suppressor genes, methylation and demethylation enzymes and histone post-translational modifications associated with PNI. The influence of other epigenetic factors on the HNSCC incidence and perineural invasion such as tobacco, alcohol and oral microbiome is overviewed and HPV infection is discussed as an epigenetic factor associated with OSCC and related perineural invasion. Understanding epigenetic regulations of axon growth that lead to tumorous spread or uncovering the molecular control of axon interaction with cancer tissue can help to discover new therapeutic targets for these tumors.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The Sprouty family is a highly conserved group of intracellular modulators of receptor tyrosine kinase (RTK)-signaling pathways, which have been recently linked to primary cilia. Disruptions in the structure and function of primary cilia cause inherited disorders called ciliopathies. We aimed to evaluate Sprouty2 and Sprouty4 gene-dependent alterations of ciliary structure and to focus on the determination of its association with Hedgehog signaling defects in chondrocytes. Analysis of the transgenic mice phenotype with Sprouty2 and Sprouty4 deficiency revealed several defects, including improper endochondral bone formation and digit patterning, or craniofacial and dental abnormalities. Moreover, reduced bone thickness and trabecular bone mass, skull deformities, or chondroma-like lesions were revealed. All these pathologies might be attributed to ciliopathies. Elongation of the ciliary axonemes in embryonic and postnatal growth plate chondrocytes was observed in Sprouty2-/- and Sprouty2+/- /Sprouty4-/- mutants compared with corresponding littermate controls. Also, cilia-dependent Hedgehog signaling was upregulated in Sprouty2/4 mutant animals. Ptch1 and Ihh expression were upregulated in the autopodium and the proximal tibia of Sprouty2-/- /Sprouty4-/- mutants. Increased levels of the GLI3 repressor (GLI3R) form were detected in Sprouty2/4 mutant primary fibroblast embryonic cell cultures and tissues. These findings demonstrate that mouse lines deficient in Sprouty proteins manifest phenotypic features resembling ciliopathic phenotypes in multiple aspects and may serve as valuable models to study the association between overactivation of RTK and dysfunction of primary cilia during skeletogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).
- MeSH
- cilie metabolismus MeSH
- ciliopatie genetika MeSH
- fenotyp MeSH
- membránové proteiny genetika MeSH
- myši transgenní MeSH
- myši MeSH
- protein-serin-threoninkinasy genetika MeSH
- proteiny hedgehog * metabolismus MeSH
- proteiny nervové tkáně genetika MeSH
- signální transdukce * MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Deciphering the role of the aryl hydrocarbon receptor (AhR) in lung cancer cells may help us to better understand the role of toxic AhR ligands in lung carcinogenesis, including cancer progression. We employed human lung carcinoma A549 cells to investigate their fate after continuous two-week exposure to model AhR agonists, genotoxic benzo[a]pyrene (BaP; 1 μM) and non-genotoxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 nM). While TCDD increased proliferative rate of A549 cells, exposure to BaP decreased cell proliferation and induced epithelial-to-mesenchymal transition (EMT)-like phenotype, which was associated with enhanced cell migration, invasion, and altered cell morphology. Although TCDD also suppressed expression of E-cadherin and activated some genes linked to EMT, it did not induce the EMT-like phenotype. The results of transcriptomic analysis, and the opposite effects of BaP and TCDD on cell proliferation, indicated that a delay in cell cycle progression, together with a slight increase of senescence (when coupled with AhR activation), favors the induction of EMT-like phenotype. The shift towards EMT-like phenotype observed after simultaneous treatment with TCDD and mitomycin C (an inhibitor of cell proliferation) confirmed the hypothesis. Since BaP decreased cell proliferative rate via induction of p21 expression, we generated the A549 cell model with reduced p21 expression and exposed it to BaP for two weeks. The p21 knockdown suppressed the BaP-mediated EMT-like phenotype in A549 cells, thus confirming that a delayed cell cycle progression, together with p21-dependent induction of senescence-related chemokine CCL2, may contribute to induction of EMT-like cell phenotype in lung cells exposed to genotoxic AhR ligands.
- MeSH
- benzopyren toxicita MeSH
- epitelové buňky MeSH
- fenotyp MeSH
- karcinom * MeSH
- lidé MeSH
- nádory plic * genetika MeSH
- plíce MeSH
- receptory aromatických uhlovodíků genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD/MTPD) and medium chain acyl-CoA dehydrogenase deficiency (MCADD) were included in the expanded neonatal screening program (ENBS) in Czechia in 2009, allowing for the presymptomatic diagnosis and nutritional management of these patients. The aim of our study was to assess the nationwide impact of ENBS on clinical outcome. This retrospective study analysed acute events and chronic complications and their severity in pre-ENBS and post-ENBS cohorts. In total, 28 children (12 before, 16 after ENBS) were diagnosed with LCHADD/MTPD (incidence 0.8/100,000 before and 1.2/100,000 after ENBS). In the subgroup detected by ENBS, a significantly longer interval from birth to first acute encephalopathy was observed. In addition, improvement in neuropathy and cardiomyopathy (although statistically non-significant) was demonstrated in the post-ENBS subgroup. In the MCADD cohort, we included 69 patients (15 before, 54 after ENBS). The estimated incidence rose from 0.7/100,000 before to 4.3/100,000 after ENBS. We confirmed a significant decrease in the number of episodes of acute encephalopathy and lower proportion of intellectual disability after ENBS (p < 0.0001). The genotype-phenotype correlations suggest a new association between homozygosity for the c.1528C > G variant and more severe heart involvement in LCHADD patients.
- MeSH
- 3-hydroxyacyl-CoA-dehydrogenasy nedostatek MeSH
- acyl-CoA-dehydrogenasa nedostatek MeSH
- dítě MeSH
- hodnocení výsledků zdravotní péče MeSH
- incidence MeSH
- kardiomyopatie diagnóza dietoterapie epidemiologie MeSH
- karnitin analogy a deriváty krev MeSH
- kojenec MeSH
- lidé MeSH
- mitochondriální myopatie diagnóza dietoterapie epidemiologie MeSH
- mitochondriální trifunkční protein nedostatek MeSH
- nemoci nervového systému diagnóza dietoterapie epidemiologie MeSH
- novorozenec MeSH
- novorozenecký screening metody MeSH
- předškolní dítě MeSH
- retrospektivní studie MeSH
- rhabdomyolýza diagnóza dietoterapie epidemiologie MeSH
- stupeň závažnosti nemoci MeSH
- vrozené poruchy metabolismu tuků diagnóza dietoterapie epidemiologie MeSH
- vrozené poruchy metabolismu diagnóza MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Achondroplasia is the most prevalent genetic form of dwarfism in humans and is caused by activating mutations in FGFR3 tyrosine kinase. The clinical need for a safe and effective inhibitor of FGFR3 is unmet, leaving achondroplasia currently incurable. Here, we evaluated RBM-007, an RNA aptamer previously developed to neutralize the FGFR3 ligand FGF2, for its activity against FGFR3. In cultured rat chondrocytes or mouse embryonal tibia organ culture, RBM-007 rescued the proliferation arrest, degradation of cartilaginous extracellular matrix, premature senescence, and impaired hypertrophic differentiation induced by FGFR3 signaling. In cartilage xenografts derived from induced pluripotent stem cells from individuals with achondroplasia, RBM-007 rescued impaired chondrocyte differentiation and maturation. When delivered by subcutaneous injection, RBM-007 restored defective skeletal growth in a mouse model of achondroplasia. We thus demonstrate a ligand-trap concept of targeting the cartilage FGFR3 and delineate a potential therapeutic approach for achondroplasia and other FGFR3-related skeletal dysplasias.
- MeSH
- achondroplazie * farmakoterapie genetika MeSH
- aptamery nukleotidové * MeSH
- buněčná diferenciace MeSH
- chondrocyty MeSH
- krysa rodu rattus MeSH
- myši MeSH
- receptor fibroblastových růstových faktorů, typ 3 genetika MeSH
- vývoj kostí MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss-of-function mutations in the gene encoding adrenergic receptor kinase 1 (ADRBK1 or GRK2). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia-based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co-receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.
- MeSH
- Ellisův-van Creveldův syndrom * MeSH
- kinasa 2 receptorů spřažených s G-proteiny genetika MeSH
- lidé MeSH
- mutace MeSH
- proteiny hedgehog * genetika MeSH
- signální dráha Wnt MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH