Psychosis is a state of altered thoughts which often accompanies schizophrenia. It was suggested that changes in energetic metabolism accompany psychosis and post-psychosis states. Here, we use the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 to experimentally induce psychosis-like behavior in rats. We addressed an effect of single and repeated (5×) MK-801 application (0.3 mg/kg; i.p.) on the energy metabolism in homogenates and crude mitochondrial fraction (CMF) of the striatum (STR), prefrontal cortex (PFC), and the hippocampus (HIP) of the adult male Wistar rat (n = 39). In each brain region, we assessed activity of glycolytic (hexokinase (HK) and lactate dehydrogenase (LDH)) and Krebs cycle enzymes (citrate synthase (CS) and malate dehydrogenase (MDH)) 2 h and 3 days (3d) after the last MK-801 application together with relative respiratory rates assessment in tissue homogenate. In STR, a single MK-801 application led to a decrease in the LDH (p = 0.0035) and the increase of the MDH (p = 0.0043) activities following 3d. Therein, repeated MK-801 doses evoked increased LDH (p = 0.0204) and CS (p = 0.0019) activities in the homogenate 2 h and increased HK (p = 0.0007) 3d after the last application. Elevated HK activity within CMF was observed after 3d (p = 0.0054). In PFC, repeated MK-801 application decreased HK activity in the homogenate 3d after the final application (p = 0.0234). Correspondingly, PFC HK activity in CMF of repeated administration samples dropped (p = 0.003). In HIP, repeated MK-801 administration led to increased respiration of SDH (p = 0.0475) only 2 h after the last application and decreased CS activity (p = 0.0160) was observed 3d after the last application. Our results indicate a progressive metabolic dysregulation of glycolytic and Krebs cycle enzymes following repeated inhibition of NMDA receptors activity in a region-specific manner. Energetic alterations may form a basis for persisting cognitive problems during and following a psychosis in schizophrenia patients.
- MeSH
- citrátový cyklus MeSH
- citrátsynthasa metabolismus farmakologie MeSH
- dizocilpinmaleát * farmakologie MeSH
- hexokinasa metabolismus farmakologie MeSH
- hipokampus MeSH
- krysa rodu rattus MeSH
- L-laktátdehydrogenasa metabolismus MeSH
- lidé MeSH
- N-methylaspartát * farmakologie MeSH
- potkani Wistar MeSH
- prefrontální mozková kůra MeSH
- receptory N-methyl-D-aspartátu metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Adaptation to continuous normobaric hypoxia (CNH) protects the heart against acute ischemia/reperfusion injury. Recently, we have demonstrated the infarct size-limiting effect of CNH also in hearts of spontaneously hypertensive rats (SHR) and in conplastic SHR-mtBN strain characterized by the selective replacement of the mitochondrial genome of SHR with that of more ischemia-resistant Brown Norway rats. Importantly, cardioprotective effect of CNH was more pronounced in SHR-mtBN than in SHR. Thus, here we aimed to identify candidate genes which may contribute to this difference between the strains. Rats were adapted to CNH (FiO2 0.1) for 3 weeks or kept at room air as normoxic controls. Screening of 45 transcripts was performed in left ventricles using Biomark Chip. Significant differences between the groups were analyzed by univariate analysis (ANOVA) and the genes contributing to the differences between the strains unmasked by CNH were identified by multivariate analyses (PCA, SOM). ANOVA with Bonferroni correction revealed that transcripts differently affected by CNH in SHR and SHR-mtBN belong predominantly to lipid metabolism and antioxidant defense. PCA divided four experimental groups into two main clusters corresponding to chronically hypoxic and normoxic groups, and differences between the strains were more pronounced after CNH. Subsequently, the following 14 candidate transcripts were selected by PCA, and confirmed by SOM analyses, that can contribute to the strain differences in cardioprotective phenotype afforded by CNH: Alkaline ceramidase 2 (Acer2), Fatty acid translocase (Cd36), Aconitase 1 (Aco1), Peroxisome proliferator activated receptor gamma (Pparg), Hemoxygenase 2 (Hmox2), Phospholipase A2 group IIA (Ppla2g2a), Dynamin-related protein (Drp), Protein kinase C epsilon (Pkce), Hexokinase 2 (Hk2), Sphingomyelin synthase 2 (Sgms2), Caspase 3 (Casp3), Mitofussin 1 (Mfn1), Phospholipase A2 group V (Pla2g5), and Catalase (Cat). Our data suggest that the stronger cardioprotective phenotype of conplastic SHR-mtBN strain afforded by CNH is associated with either preventing the drop or increasing the expression of transcripts related to energy metabolism, antioxidant response and mitochondrial dynamics.
- Publikační typ
- časopisecké články MeSH
Metabolic impairments associated with obstructive sleep apnea syndrome (OSA) are linked to tissue hypoxia, however, the explanatory molecular and endocrine mechanisms remain unknown. Using gas-permeable cultureware, we studied the chronic effects of mild and severe hypoxia on free fatty acid (FFA) uptake, storage, and oxidation in L6 myotubes under 20, 4, or 1% O2. Additionally, the impact of metformin and the peroxisome proliferator-activated receptor (PPAR) β/δ agonist, called GW501516, were investigated. Exposure to mild and severe hypoxia reduced FFA uptake by 37 and 32%, respectively, while metformin treatment increased FFA uptake by 39% under mild hypoxia. GW501516 reduced FFA uptake under all conditions. Protein expressions of CD36 (cluster of differentiation 36) and SCL27A4 (solute carrier family 27 fatty acid transporter, member 4) were reduced by 17 and 23% under severe hypoxia. Gene expression of UCP2 (uncoupling protein 2) was reduced by severe hypoxia by 81%. Metformin increased CD36 protein levels by 28% under control conditions and SCL27A4 levels by 56% under mild hypoxia. Intracellular lipids were reduced by mild hypoxia by 18%, while in controls only, metformin administration further reduced intracellular lipids (20% O2) by 36%. Finally, palmitate oxidation was reduced by severe hypoxia, while metformin treatment reduced non-mitochondrial O2 consumption, palmitate oxidation, and proton leak at all O2 levels. Hypoxia directly reduced FFA uptake and intracellular lipids uptake in myotubes, at least partially, due to the reduction in CD36 transporters. Metformin, but not GW501516, can increase FFA uptake and SCL27A4 expression under mild hypoxia. Described effects might contribute to elevated plasma FFA levels and metabolic derangements in OSA.
- Publikační typ
- časopisecké články MeSH
- Klíčová slova
- mitochondriální pór přechodné propustnosti,
- MeSH
- akutní nekrotizující pankreatitida patologie MeSH
- Alzheimerova nemoc etiologie MeSH
- amyotrofická laterální skleróza etiologie MeSH
- buňky metabolismus MeSH
- Huntingtonova nemoc etiologie MeSH
- ionty chemie MeSH
- kardiovaskulární nemoci MeSH
- mitochondriální membrány patologie MeSH
- mitochondrie fyziologie patologie MeSH
- nealkoholová steatóza jater etiologie MeSH
- oxidační stres MeSH
- Parkinsonova nemoc etiologie MeSH
- reperfuzní poškození myokardu farmakoterapie MeSH
- Reyeův syndrom etiologie MeSH
- salicylany toxicita MeSH
- syndromy suchého oka etiologie MeSH
- vápník chemie metabolismus MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
The β-adrenergic signaling pathways and antioxidant defence mechanisms play important roles in maintaining proper heart function. Here, we examined the effect of chronic normobaric hypoxia (CNH, 10% O2, 3 weeks) on myocardial β-adrenergic signaling and selected components of the antioxidant system in spontaneously hypertensive rats (SHR) and in a conplastic SHR-mtBN strain characterized by the selective replacement of the mitochondrial genome of SHR with that of the more ischemia-resistant Brown Norway strain. Our investigations revealed some intriguing differences between the two strains at the level of β-adrenergic receptors (β-ARs), activity of adenylyl cyclase (AC) and monoamine oxidase A (MAO-A), as well as distinct changes after CNH exposure. The β2-AR/β1-AR ratio was significantly higher in SHR-mtBN than in SHR, apparently due to increased expression of β2-ARs. Adaptation to hypoxia elevated β2-ARs in SHR and decreased the total number of β-ARs in SHR-mtBN. In parallel, the ability of isoprenaline to stimulate AC activity was found to be higher in SHR-mtBN than that in SHR. Interestingly, the activity of MAO-A was notably lower in SHR-mtBN than in SHR, and it was markedly elevated in both strains after exposure to hypoxia. In addition to that, CNH markedly enhanced the expression of catalase and aldehyde dehydrogenase-2 in both strains, and decreased the expression of Cu/Zn superoxide dismutase in SHR. Adaptation to CNH intensified oxidative stress to a similar extent in both strains and elevated the IL-10/TNF-α ratio in SHR-mtBN only. These data indicate that alterations in the mitochondrial genome can result in peculiar changes in myocardial β-adrenergic signaling, MAO-A activity and antioxidant defence and may, thus, affect the adaptive responses to hypoxia.
- MeSH
- adenylátcyklasy metabolismus MeSH
- beta-adrenergní receptory metabolismus MeSH
- hypoxie metabolismus MeSH
- krysa rodu rattus MeSH
- malondialdehyd metabolismus MeSH
- monoaminoxidasa metabolismus MeSH
- myokard metabolismus MeSH
- potkani inbrední SHR MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Recently we have shown that adaptation to continuous normobaric hypoxia (CNH) decreases myocardial ischemia/reperfusion injury in spontaneously hypertensive rats (SHR) and in a conplastic strain (SHR-mtBN). The protective effect was stronger in the latter group characterized by a selective replacement of the SHR mitochondrial genome with that of a more ischemia-resistant Brown Norway strain. The aim of the present study was to examine the possible involvement of the hypoxia inducible factor (HIF)-dependent pathway of the protein kinase B/glucose transporters/hexokinase (Akt/GLUT/HK) in this mitochondrial genome-related difference of the cardioprotective phenotype. Adult male rats were exposed for 3 wk to CNH ([Formula: see text] 0.1). The expression of dominant isoforms of Akt, GLUT, and HK in left ventricular myocardium was determined by real-time RT-PCR and Western blotting. Subcellular localization of GLUTs was assessed by quantitative immunofluorescence. Whereas adaptation to hypoxia markedly upregulated protein expression of HK2, GLUT1, and GLUT4 in both rat strains, Akt2 protein level was significantly increased in SHR-mtBN only. Interestingly, a higher content of HK2 was revealed in the sarcoplasmic reticulum-enriched fraction in SHR-mtBN after CNH. The increased activity of HK determined in the mitochondrial fraction after CNH in both strains suggested an increase of HK association with mitochondria. Interestingly, HIF1a mRNA increased and HIF2a mRNA decreased after CNH, the former effect being more pronounced in SHR-mtBN than in SHR. Pleiotropic effects of upregulated Akt2 along with HK translocation to mitochondria and mitochondria-associated membranes can potentially contribute to a stronger CNH-afforded cardioprotection in SHR-mtBN compared with progenitor SHR.
- MeSH
- druhová specificita MeSH
- faktor 1 indukovatelný hypoxií genetika metabolismus MeSH
- fyziologická adaptace genetika MeSH
- genom mitochondriální genetika MeSH
- hexokinasa genetika metabolismus MeSH
- hypertenze genetika MeSH
- hypoxie * MeSH
- myokard metabolismus MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- proteiny usnadňující transport glukosy genetika metabolismus MeSH
- protoonkogenní proteiny c-akt genetika metabolismus MeSH
- signální transdukce genetika MeSH
- srdeční mitochondrie genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Abnormalities in cancer metabolism represent potential targets for cancer therapy. We have recently identified a natural compound Quambalarine B (QB), which inhibits proliferation of several leukemic cell lines followed by cell death. We have predicted ubiquinone binding sites of mitochondrial respiratory complexes as potential molecular targets of QB in leukemia cells. Hence, we tracked the effect of QB on leukemia metabolism by applying several omics and biochemical techniques. We have confirmed the inhibition of respiratory complexes by QB and found an increase in the intracellular AMP levels together with respiratory substrates. Inhibition of mitochondrial respiration by QB triggered reprogramming of leukemic cell metabolism involving disproportions in glycolytic flux, inhibition of proteins O-glycosylation, stimulation of glycine synthesis pathway, and pyruvate kinase activity, followed by an increase in pyruvate and a decrease in lactate levels. Inhibition of mitochondrial complex I by QB suppressed folate metabolism as determined by a decrease in formate production. We have also observed an increase in cellular levels of several amino acids except for aspartate, indicating the dependence of Jurkat (T-ALL) cells on aspartate synthesis. These results indicate blockade of mitochondrial complex I and II activity by QB and reduction in aspartate and folate metabolism as therapeutic targets in T-ALL cells. Anti-cancer activity of QB was also confirmed during in vivo studies, suggesting the therapeutic potential of this natural compound.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Functional mitochondria in skeletal muscle of patients with protracted critical illness and intensive care unit-acquired weakness are depleted, but remaining mitochondria have increased functional capacities of respiratory complexes II and III. This can be an adaptation to relative abundancy of fatty acid over glucose caused by insulin resistance. We hypothesized that the capacity of muscle mitochondria to oxidize fatty acid is increased in protracted critical illness. METHODS: We assessed fatty acid oxidation (FAO) and mitochondrial functional indices in vitro by using extracellular flux analysis in cultured myotubes obtained by isolating and culturing satellite cells from vastus lateralis muscle biopsy samples from patients with ICU-acquired weakness (n = 6) and age-matched healthy controls (n = 7). Bioenergetic measurements were performed at baseline and after 6 days of exposure to free fatty acids (FFAs). RESULTS: Mitochondrial density in myotubes from ICU patients was 69% of healthy controls ( P = .051). After adjustment to mitochondrial content, there were no differences in adenosine triphosphate (ATP) synthesis or the capacity and coupling of the respiratory chain. FAO capacity in ICU patients was 157% of FAO capacity in controls ( P = .015). In myotubes of ICU patients, unlike healthy controls, the exposure to FFA significantly ( P = .009) increased maximum respiratory chain capacity. CONCLUSION: In an in vitro model of skeletal muscle of patients with protracted critical illness, we have shown signs of adaptation to increased FAO. Even in the presence of glucose and insulin, elevation of FFAs in the extracellular environment increased maximal capacity of the respiratory chain.
- MeSH
- čtyřhlavý sval stehenní MeSH
- energetický metabolismus * MeSH
- fyziologická adaptace MeSH
- inzulin krev MeSH
- inzulinová rezistence MeSH
- jednotky intenzivní péče * MeSH
- kosterní svalová vlákna MeSH
- kosterní svaly cytologie patofyziologie MeSH
- krevní glukóza metabolismus MeSH
- kritický stav * MeSH
- kyseliny mastné neesterifikované metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipolýza MeSH
- respirační komplex II metabolismus MeSH
- senioři MeSH
- svalová slabost etiologie metabolismus patofyziologie MeSH
- svalové mitochondrie fyziologie MeSH
- transport elektronů MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Mitochondria play an essential role in improved cardiac ischaemic tolerance conferred by adaptation to chronic hypoxia. In the present study, we analysed the effects of continuous normobaric hypoxia (CNH) on mitochondrial functions, including the sensitivity of the mitochondrial permeability transition pore (MPTP) to opening, and infarct size (IS) in hearts of spontaneously hypertensive rats (SHR) and the conplastic SHR-mt(BN) strain, characterized by the selective replacement of the mitochondrial genome of SHR with that of the more ischaemia-resistant brown Norway (BN) strain. Rats were adapted to CNH (10% O2, 3 weeks) or kept at room air as normoxic controls. In the left ventricular mitochondria, respiration and cytochrome c oxidase (COX) activity were measured using an Oxygraph-2k and the sensitivity of MPTP opening was assessed spectrophotometrically as Ca(2+)-induced swelling. Myocardial infarction was analysed in anaesthetized open-chest rats subjected to 20 min of coronary artery occlusion and 3 h of reperfusion. The IS reached 68±3.0% and 65±5% of the area at risk in normoxic SHR and SHR-mt(BN) strains, respectively. CNH significantly decreased myocardial infarction to 46±3% in SHR. In hypoxic SHR-mt(BN) strain, IS reached 33±2% and was significantly smaller compared with hypoxic SHR. Mitochondria isolated from hypoxic hearts of both strains had increased detergent-stimulated COX activity and were less sensitive to MPTP opening. The maximum swelling rate was significantly lower in hypoxic SHR-mt(BN) strain compared with hypoxic SHR, and positively correlated with myocardial infarction in all experimental groups. In conclusion, the mitochondrial genome of SHR modulates the IS-limiting effect of adaptation to CNH by affecting mitochondrial energetics and MPTP sensitivity to opening.
- MeSH
- chronická nemoc MeSH
- genom mitochondriální genetika MeSH
- hypoxie * MeSH
- infarkt myokardu genetika metabolismus patologie MeSH
- krysa rodu rattus MeSH
- mitochondriální DNA genetika MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- reperfuzní poškození myokardu genetika metabolismus patofyziologie MeSH
- respirační komplex IV genetika metabolismus MeSH
- srdeční mitochondrie genetika metabolismus MeSH
- transportní proteiny mitochondriální membrány metabolismus MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In this study, we focused on an analysis of biguanides effects on mitochondrial enzyme activities, mitochondrial membrane potential and membrane permeability transition pore function. We used phenformin, which is more efficient than metformin, and evaluated its effect on rat liver mitochondria and isolated hepatocytes. In contrast to previously published data, we found that phenformin, after a 5 min pre-incubation, dose-dependently inhibits not only mitochondrial complex I but also complex II and IV activity in isolated mitochondria. The enzymes complexes inhibition is paralleled by the decreased respiratory control index and mitochondrial membrane potential. Direct measurements of mitochondrial swelling revealed that phenformin increases the resistance of the permeability transition pore to Ca(2+) ions. Our data might be in agreement with the hypothesis of Schäfer (1976) that binding of biguanides to membrane phospholipids alters membrane properties in a non-specific manner and, subsequently, different enzyme activities are modified via lipid phase. However, our measurements of anisotropy of fluorescence of hydrophobic membrane probe diphenylhexatriene have not shown a measurable effect of membrane fluidity with the 1 mM concentration of phenformin that strongly inhibited complex I activity. Our data therefore suggest that biguanides could be considered as agents with high efficacy but low specifity.
- MeSH
- biguanidy farmakologie MeSH
- fenformin farmakologie MeSH
- inhibitory enzymů farmakologie MeSH
- jaterní mitochondrie účinky léků enzymologie MeSH
- krysa rodu rattus MeSH
- metformin farmakologie MeSH
- potkani Wistar MeSH
- respirační komplex I antagonisté a inhibitory fyziologie MeSH
- respirační komplex II antagonisté a inhibitory fyziologie MeSH
- respirační komplex IV antagonisté a inhibitory fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH