PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.
- MeSH
- buněčné jadérko * metabolismus MeSH
- dvouřetězcové zlomy DNA MeSH
- lidé MeSH
- poškození DNA MeSH
- protein promyelocytické leukemie * metabolismus genetika MeSH
- ribozomální DNA * genetika metabolismus MeSH
- RNA-polymerasa I metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood-brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure-activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.
- Publikační typ
- časopisecké články MeSH
Plasmonic photothermal therapy (PPTT) employing plasmonic gold nanorods (GNRs) presents a potent strategy for eradication of tumors including aggressive brain gliomas. Despite its promise, there is a pressing need for a more comprehensive evaluation of PPTT using sophisticated in vitro models that closely resemble tumor tissues, thereby facilitating the elucidation of therapeutic mechanisms. In this study, we exposed 3D glioma spheroids (tumoroids) to (16-mercaptohexadecyl)trimethylammonium bromide-functionalized gold nanorods (MTAB-GNRs) and a near-infrared (NIR) laser. We demonstrate that the photothermal effect can be fine-tuned by adjusting the nanoparticle concentration and laser power. Depending on the selected parameters, the laser can trigger either regulated or non-regulated cell death (necrosis) in both mouse GL261 and human U-87 MG glioma cell lines, accompanied by translocation of phosphatidylserine in the membrane. Our investigation into the mechanism of regulated cell death induced by PPTT revealed an absence of markers associated with classical apoptosis pathways, such as cleaved caspase 3. Instead, we observed the presence of cleaved caspase 1, gasdermin D, and elevated levels of NLRP3 in NIR-irradiated tumoroids, indicating the activation of pyroptosis. This finding correlates with previous observations of lysosomal accumulation of MTAB-GNRs and the known lysosomal pathway of pyroptosis activation. We further confirmed the absence of toxic breakdown products of GNRs using electron microscopy, which showed no melting or fragmentation of gold nanoparticles under the conditions causing regulated cell death. In conclusion, PPTT using coated gold nanorods offers significant potential for glioma cell elimination occurring through the activation of pyroptosis rather than classical apoptosis pathways.
- MeSH
- buněčné sféroidy účinky léků patologie MeSH
- fototermální terapie MeSH
- gliom * patologie farmakoterapie metabolismus MeSH
- kationty chemie farmakologie MeSH
- kovové nanočástice chemie MeSH
- kvartérní amoniové sloučeniny chemie farmakologie MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové buňky kultivované MeSH
- nanotrubičky * chemie MeSH
- pyroptóza * účinky léků MeSH
- viabilita buněk účinky léků MeSH
- zlato * chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Frentizole is immunosuppressive drug with low acute toxicity and lifespan-prolonging effect. Recently, frentizole ́s potential to disrupt toxic amyloid β (Aβ) - Aβ-binding alcohol dehydrogenase (ABAD) interaction in mitochondria in Alzheimer ́s brains has been revealed. Another broadly studied drug with anti-aging and immunosuppressive properties is an mTOR inhibitor - rapamycin. Since we do not yet precisely know what is behind the lifespan-prolonging effect of rapamycin and frentizole, whether it is the ability to inhibit the mTOR signaling pathway, reduction in mitochondrial toxicity, immunosuppressive effect, or a combination of all of them, we have decided within our previous work to dock the entire in-house library of almost 240 Aβ-ABAD modulators into the FKBP-rapamycin-binding (FRB) domain of mTOR in order to interlink mTOR-centric and mitochondrial free radical-centric theories of aging and thus to increase the chances of success. Based on the results of the docking study, molecular dynamic simulation and MM-PBSA calculations, we have selected nine frentizole-like compounds (1 - 9). Subsequently, we have determined their real physical-chemical properties (logP, logD, pKa and solubility in water and buffer), cytotoxic/cytostatic, mTOR inhibitory, and in vitro anti-senescence (senolytic and senomorphic) effects. Finally, the three best candidates (4, 8, and 9) have been forwarded for in vivo safety studies to assess their acute toxicity and pharmacokinetic properties. Based on obtained results, only compound 4 demonstrated the best results within in vitro testing, the ability to cross the blood-brain barrier and the lowest acute toxicity (LD50 in male mice 559 mg/kg; LD50 in female mice 575 mg/kg).
To date, the most studied drug in anti-aging research is the mTOR inhibitor - rapamycin. Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation - inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.
- Publikační typ
- časopisecké články MeSH
Interleukin-1α (IL-1α) and Annexin A2 (AnxA2) are pleiotropic molecules with both intracellular and extracellular roles. They share several characteristics including unconventional secretion aided by S100 proteins, anchoring of the externalized proteins at the outer surface of the plasma membrane and response to oxidative stress. Although IL-1α and AnxA2 have been implicated in a variety of biological processes, including cancer, little is known about the mechanisms of their cellular release. In the present study, employing the non-cancerous breast epithelial MCF10A cells, we demonstrate that IL-1α and AnxA2 establish a close association in response to oxidative stress. Stress conditions lead to translocation of both proteins towards lamellipodia rich in vimentin and association of full-length IL-1α and Tyr23 phosphorylated AnxA2 with the plasma membrane at peripheral sites depleted of F-actin. Notably, membrane-associated IL-1α and AnxA2 preferentially localize to the outer edges of the MCF10A cell islands, suggesting that the two proteins participate in the communication of these epithelial cells with their neighboring cells. Similarly, in U2OS osteosarcoma cell line both endogenous IL-1α and transiently produced IL-1α/EGFP associate with the plasma membrane. While benign MFC10A cells present membrane-associated IL-1α and AnxA2 at the edges of their cell islands, the aggressive cancerous U2OS cells communicate in such manner also with distant cells.
- MeSH
- aktiny metabolismus MeSH
- annexin A2 metabolismus MeSH
- buněčná membrána metabolismus MeSH
- epitelové buňky metabolismus MeSH
- fosforylace fyziologie MeSH
- interleukin-1alfa metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- oxidační stres fyziologie MeSH
- proteiny S100 metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Extrachromosomal hereditary elements such as organelles, viruses, and plasmids are important for the cell fitness and survival. Their transcription is dependent on host cellular RNA polymerase (RNAP) or intrinsic RNAP encoded by these elements. The yeast Kluyveromyces lactis contains linear cytoplasmic DNA virus-like elements (VLEs, also known as linear plasmids) that bear genes encoding putative non-canonical two-subunit RNAP. Here, we describe the architecture and identify the evolutionary origin of this transcription machinery. We show that the two RNAP subunits interact in vivo, and this complex interacts with another two VLE-encoded proteins, namely the mRNA capping enzyme and a putative helicase. RNAP, mRNA capping enzyme and the helicase also interact with VLE-specific DNA in vivo. Further, we identify a promoter sequence element that causes 5' mRNA polyadenylation of VLE-specific transcripts via RNAP slippage at the transcription initiation site, and structural elements that precede the termination sites. As a result, we present a first model of the yeast virus-like element transcription initiation and intrinsic termination. Finally, we demonstrate that VLE RNAP and its promoters display high similarity to poxviral RNAP and promoters of early poxviral genes, respectively, thereby pointing to their evolutionary origin.
- MeSH
- cytoplazma MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- fungální proteiny genetika MeSH
- genetická transkripce * MeSH
- Kluyveromyces genetika MeSH
- konformace nukleové kyseliny MeSH
- molekulární evoluce * MeSH
- polyadenylace MeSH
- promotorové oblasti (genetika) * MeSH
- regulace genové exprese u hub MeSH
- responzivní elementy * MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie MeSH
- stabilita RNA MeSH
- viry genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Interleukin-1α (IL-1α) is a proinflammatory cytokine and a key player in host immune responses in higher eukaryotes. IL-1α has pleiotropic effects on a wide range of cell types, and it has been extensively studied for its ability to contribute to various autoimmune and inflammation-linked disorders, including rheumatoid arthritis, Alzheimer's disease, systemic sclerosis and cardiovascular disorders. Interestingly, a significant proportion of IL-1α is translocated to the cell nucleus, in which it interacts with histone acetyltransferase complexes. Despite the importance of IL-1α, little is known regarding its binding targets and functions in the nucleus. We took advantage of the histone acetyltransferase (HAT) complexes being evolutionarily conserved from yeast to humans and the yeast SAGA complex serving as an epitome of the eukaryotic HAT complexes. Using gene knock-out technique and co-immunoprecipitation of the IL-1α precursor with TAP-tagged subunits of the yeast HAT complexes, we mapped the IL-1α-binding site to the HAT/Core module of the SAGA complex. We also predicted the 3-D structure of the IL-1α N-terminal domain, and by employing structure similarity searches, we found a similar structure in the C-terminal regulatory region of the catalytic subunit of the AMP-activated/Snf1 protein kinases, which interact with HAT complexes both in mammals and yeast, respectively. This finding is further supported with the ability of the IL-1α precursor to partially rescue growth defects of snf1Δ yeast strains on media containing 3-Amino-1,2,4-triazole (3-AT), a competitive inhibitor of His3. Finally, the careful evaluation of our data together with other published data in the field allows us to hypothesize a new function for the ADA complex in SAGA complex assembly.
- MeSH
- biologické modely MeSH
- buněčné jádro metabolismus MeSH
- genový knockout MeSH
- histonacetyltransferasy metabolismus MeSH
- imunoprecipitace MeSH
- interleukin-1alfa chemie metabolismus MeSH
- lidé MeSH
- podjednotky proteinů metabolismus MeSH
- protein-serin-threoninkinasy chemie metabolismus MeSH
- proteinkinasy aktivované AMP chemie metabolismus MeSH
- proteinové prekurzory chemie metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- signální transdukce MeSH
- strukturní homologie proteinů MeSH
- subcelulární frakce metabolismus MeSH
- terciární struktura proteinů MeSH
- trans-aktivátory metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- výpočetní biologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH