Large-scale next-generation sequencing (NGS) studies revealed extensive genetic heterogeneity, driving a highly variable clinical course of chronic lymphocytic leukaemia (CLL). The evolution of subclonal populations contributes to diverse therapy responses and disease refractoriness. Besides, the dynamics and impact of subpopulations before therapy initiation are not well understood. We examined changes in genomic defects in serial samples of 100 untreated CLL patients, spanning from indolent to aggressive disease. A comprehensive NGS panel LYNX, which provides targeted mutational analysis and genome-wide chromosomal defect assessment, was employed. We observed dynamic changes in the composition and/or proportion of genomic aberrations in most patients (62%). Clonal evolution of gene variants prevailed over the chromosomal alterations. Unsupervised clustering based on aberration dynamics revealed four groups of patients with different clinical behaviour. An adverse cluster was associated with fast progression and early therapy need, characterized by the expansion of TP53 defects, ATM mutations, and 18p- alongside dynamic SF3B1 mutations. Our results show that clonal evolution is active even without therapy pressure and that repeated genetic testing can be clinically relevant during long-term patient monitoring. Moreover, integrative NGS testing contributes to the consolidated evaluation of results and accurate assessment of individual patient prognosis.
BACKGROUND: Chronic lymphocytic leukemia (CLL) is a common adult leukemia characterized by the accumulation of neoplastic mature B cells in blood, bone marrow, lymph nodes, and spleen. The disease biology remains unresolved in many aspects, including the processes underlying the disease progression and relapses. However, studying CLL in vitro poses a considerable challenge due to its complexity and dependency on the microenvironment. Several approaches are utilized to overcome this issue, such as co-culture of CLL cells with other cell types, supplementing culture media with growth factors, or setting up a three-dimensional (3D) culture. Previous studies have shown that 3D cultures, compared to conventional ones, can lead to enhanced cell survival and altered gene expression. 3D cultures can also give valuable information while testing treatment response in vitro since they mimic the cell spatial organization more accurately than conventional culture. METHODS: In our study, we investigated the behavior of CLL cells in two types of material: (i) solid porous collagen scaffolds and (ii) gel composed of carboxymethyl cellulose and polyethylene glycol (CMC-PEG). We studied CLL cells' distribution, morphology, and viability in these materials by a transmitted-light and confocal microscopy. We also measured the metabolic activity of cultured cells. Additionally, the expression levels of MYC, VCAM1, MCL1, CXCR4, and CCL4 genes in CLL cells were studied by qPCR to observe whether our novel culture approaches lead to increased adhesion, lower apoptotic rates, or activation of cell signaling in relation to the enhanced contact with co-cultured cells. RESULTS: Both materials were biocompatible, translucent, and permeable, as assessed by metabolic assays, cell staining, and microscopy. While collagen scaffolds featured easy manipulation, washability, transferability, and biodegradability, CMC-PEG was advantageous for its easy preparation process and low variability in the number of accommodated cells. Both materials promoted cell-to-cell and cell-to-matrix interactions due to the scaffold structure and generation of cell aggregates. The metabolic activity of CLL cells cultured in CMC-PEG gel was similar to or higher than in conventional culture. Compared to the conventional culture, there was (i) a lower expression of VCAM1 in both materials, (ii) a higher expression of CCL4 in collagen scaffolds, and (iii) a lower expression of CXCR4 and MCL1 (transcript variant 2) in collagen scaffolds, while it was higher in a CMC-PEG gel. Hence, culture in the material can suppress the expression of a pro-apoptotic gene (MCL1 in collagen scaffolds) or replicate certain gene expression patterns attributed to CLL cells in lymphoid organs (low CXCR4, high CCL4 in collagen scaffolds) or blood (high CXCR4 in CMC-PEG).
- MeSH
- buněčné kultury metody MeSH
- chronická lymfatická leukemie * patologie metabolismus MeSH
- gely chemie MeSH
- kolagen * chemie farmakologie MeSH
- lidé MeSH
- polyethylenglykoly * chemie MeSH
- receptory CXCR4 metabolismus MeSH
- sodná sůl karboxymethylcelulosy * chemie farmakologie MeSH
- techniky 3D buněčné kultury metody MeSH
- tkáňové podpůrné struktury * chemie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Prostate cancer ranks as the second most frequently diagnosed cancer in men worldwide. Recent research highlights the crucial roles IL6ST-mediated signaling pathways play in the development and progression of various cancers, particularly through hyperactivated STAT3 signaling. However, the molecular programs mediated by IL6ST/STAT3 in prostate cancer are poorly understood. METHODS: To investigate the role of IL6ST signaling, we constitutively activated IL6ST signaling in the prostate epithelium of a Pten-deficient prostate cancer mouse model in vivo and examined IL6ST expression in large cohorts of prostate cancer patients. We complemented these data with in-depth transcriptomic and multiplex histopathological analyses. RESULTS: Genetic cell-autonomous activation of the IL6ST receptor in prostate epithelial cells triggers active STAT3 signaling and significantly reduces tumor growth in vivo. Mechanistically, genetic activation of IL6ST signaling mediates senescence via the STAT3/ARF/p53 axis and recruitment of cytotoxic T-cells, ultimately impeding tumor progression. In prostate cancer patients, high IL6ST mRNA expression levels correlate with better recurrence-free survival, increased senescence signals and a transition from an immune-cold to an immune-hot tumor. CONCLUSIONS: Our findings demonstrate a context-dependent role of IL6ST/STAT3 in carcinogenesis and a tumor-suppressive function in prostate cancer development by inducing senescence and immune cell attraction. We challenge the prevailing concept of blocking IL6ST/STAT3 signaling as a functional prostate cancer treatment and instead propose cell-autonomous IL6ST activation as a novel therapeutic strategy.
- MeSH
- inhibitor p16 cyklin-dependentní kinasy metabolismus genetika MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí * MeSH
- nádorový supresorový protein p53 * metabolismus genetika MeSH
- nádory prostaty * patologie metabolismus genetika MeSH
- regulace genové exprese u nádorů MeSH
- signální transdukce * MeSH
- stárnutí buněk * MeSH
- transkripční faktor STAT3 * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Anaplastic Large Cell Lymphoma (ALCL) is a rare and aggressive T-cell lymphoma, classified into ALK-positive and ALK-negative subtypes, based on the presence of chromosomal translocations involving the ALK gene. The current standard of treatment for ALCL is polychemotherapy, with a high overall survival rate. However, a subset of patients does not respond to or develops resistance to these therapies, posing a serious challenge for clinicians. Recent targeted treatments such as ALK kinase inhibitors and anti-CD30 antibody-drug conjugates have shown promise but, for a fraction of patients, the prognosis is still unsatisfactory. METHODS: We investigated the genetic landscape of ALK + ALCL by whole-exome sequencing; recurring mutations were characterized in vitro and in vivo using transduced ALCL cellular models. RESULTS: Recurrent mutations in FAT family genes and the transcription factor RUNX1T1 were found. These mutations induced changes in ALCL cells morphology, growth, and migration, shedding light on potential factors contributing to treatment resistance. In particular, FAT4 silencing in ALCL cells activated the β-catenin and YAP1 pathways, which play crucial roles in tumor growth, and conferred resistance to chemotherapy. Furthermore, STAT1 and STAT3 were hyper-activated in these cells. Gene expression profiling showed global changes in pathways related to cell adhesion, cytoskeletal organization, and oncogenic signaling. Notably, FAT mutations associated with poor outcome in patients. CONCLUSIONS: These findings provide novel insights into the molecular portrait of ALCL, that could help improve treatment strategies and the prognosis for ALCL patients.
- MeSH
- anaplastický velkobuněčný lymfom * genetika patologie farmakoterapie MeSH
- fenotyp MeSH
- kadheriny * genetika MeSH
- lidé MeSH
- mutace * MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- prognóza MeSH
- sekvenování exomu MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Bruton tyrosine kinase (BTK) inhibitor therapy induces peripheral blood lymphocytosis in chronic lymphocytic leukemia (CLL), which lasts for several months. It remains unclear whether nongenetic adaptation mechanisms exist, allowing CLL cells' survival during BTK inhibitor-induced lymphocytosis and/or playing a role in therapy resistance. We show that in approximately 70% of CLL cases, ibrutinib treatment in vivo increases Akt activity above pretherapy levels within several weeks, leading to compensatory CLL cell survival and a more prominent lymphocytosis on therapy. Ibrutinib-induced Akt phosphorylation (pAktS473) is caused by the upregulation of Forkhead box protein O1 (FoxO1) transcription factor, which induces expression of Rictor, an assembly protein for the mTORC2 protein complex that directly phosphorylates Akt at serine 473 (S473). Knockout or inhibition of FoxO1 or Rictor led to a dramatic decrease in Akt phosphorylation and growth disadvantage for malignant B cells in the presence of ibrutinib (or PI3K inhibitor idelalisib) in vitro and in vivo. The FoxO1/Rictor/pAktS473 axis represents an early nongenetic adaptation to B cell receptor (BCR) inhibitor therapy not requiring PI3Kδ or BTK kinase activity. We further demonstrate that FoxO1 can be targeted therapeutically and its inhibition induces CLL cells' apoptosis alone or in combination with BTK inhibitors (ibrutinib, acalabrutinib, pirtobrutinib) and blocks their proliferation triggered by T cell factors (CD40L, IL-4, and IL-21).
- MeSH
- adenin * analogy a deriváty farmakologie MeSH
- chronická lymfatická leukemie * farmakoterapie metabolismus genetika patologie MeSH
- forkhead box protein O1 * metabolismus genetika MeSH
- fosforylace MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové proteiny metabolismus genetika MeSH
- piperidiny * farmakologie MeSH
- protein RICTOR * genetika metabolismus MeSH
- proteinkinasa BTK metabolismus genetika antagonisté a inhibitory MeSH
- protoonkogenní proteiny c-akt * metabolismus genetika MeSH
- pyrazoly * farmakologie MeSH
- pyrimidiny * farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
The proposed project builds on our continuous well-established research on chronic lymphocytic leukemia (CLL). In this study, we would like to profound our knowledge to better understand the mechanisms underlying clonal evolution of CLL cells during the disease course. We will employ a challenging approach a single cell analysis (SCA) for detailed characterisation of malignant cells on single cell level with aim to monitor disease progression and to detect the most aggressive subclones of CLL. In particular, we will analyse and compare transcriptomes of thousands of CLL cells from consecutively collected samples of patients suffering from early relapsed/refractory disease (R/R CLL), which is defined by non-response to treatment or relapse within six months after therapy. Thus, R/R CLL represents a highly challenging subtype of disorder with very poor prognosis and deserves further attention. A deeper understanding of molecular mechanisms driving R/R CLL can help to select the best treatment approach, especially from the growing spectrum of targeted therapy.
Navrhovaný projekt staví na dlouhodobém výzkumu naší skupiny v oblasti chronické lymfocytární leukémie (CLL). Projekt si klade za cíl prohloubit naše znalosti a lépe porozumět mechanismům klonální evoluce CLL buněk v průběhu onemocnění. Pro detailní charakterizaci nádorových buněk a sledování agresivních klonů v průběhu progrese onemocnění chceme využít moderní přístup analýzy na úrovni jednotlivých buněk (SCA). Budeme srovnávat transkriptomy tisíců CLL buněk získaných z opakovaných odběrů pacientů s relaps/refrakterní CLL (R/R CLL) což je onemocnění, které neodpovídá na léčbu nebo u něho dochází k progresi/relapsu dříve než za šest měsíců. R/R CLL reprezentuje významnou podskupinu onemocnění, která si zaslouží pozornost vzhledem k špatné prognóze onemocnění. Porozumění molekulárním mechanismům vedoucím k rozvoji R/R CLL umožní výběr nejvhodnější léčebné strategie, zvlášť v souvislosti s rychlým vývojem cílené léčby v poslední době.
- Klíčová slova
- klonální evoluce, chronic lymphocytic leukemia, clonal evolution, Chronická lymfocytární leukémie, single cell analysis, Single cell analýza,
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR
SF3B1 mutations are recurrent in chronic lymphocytic leukemia (CLL), particularly enriched in clinically aggressive stereotyped subset #2. To investigate their impact, we conducted RNA-sequencing of 18 SF3B1MUT and 17 SF3B1WT subset #2 cases and identified 80 significant alternative splicing events (ASEs). Notable ASEs concerned exon inclusion in the non-canonical BAF (ncBAF) chromatin remodeling complex subunit, BRD9, and splice variants in eight additional ncBAF complex interactors. Long-read RNA-sequencing confirmed the presence of splice variants, and extended analysis of 139 CLL cases corroborated their association with SF3B1 mutations. Overexpression of SF3B1K700E induced exon inclusion in BRD9, resulting in a novel splice isoform with an alternative C-terminus. Protein interactome analysis of the BRD9 splice isoform revealed augmented ncBAF complex interaction, while exhibiting decreased binding of auxiliary proteins, including SPEN, BRCA2, and CHD9. Additionally, integrative multi-omics analysis identified a ncBAF complex-bound gene quartet on chromosome 1 with higher expression levels and more accessible chromatin in SF3B1MUT CLL. Finally, Cancer Dependency Map analysis and BRD9 inhibition displayed BRD9 dependency and sensitivity in cell lines and primary CLL cells. In conclusion, spliceosome dysregulation caused by SF3B1 mutations leads to multiple ASEs and an altered ncBAF complex interactome, highlighting a novel pathobiological mechanism in SF3B1MUT CLL.
- MeSH
- alternativní sestřih MeSH
- chronická lymfatická leukemie * genetika patologie metabolismus MeSH
- fosfoproteiny * genetika metabolismus MeSH
- lidé MeSH
- mutace * MeSH
- proteiny obsahující bromodoménu MeSH
- restrukturace chromatinu * MeSH
- sestřihové faktory * genetika metabolismus MeSH
- spliceozomy * metabolismus genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Inherited thrombocytopenias (ITs) encompass a group of rare disorders characterized by diminished platelet count. Recent advancements have unveiled various forms of IT, with inherited thrombocytopenia 2 (THC2) emerging as a prevalent subtype associated with germline variants in the critical 5' untranslated region of the ANKRD26 gene. This region is crucial in regulating the gene expression of ANKRD26, particularly in megakaryocytes. THC2 is an autosomal dominant disorder presenting as mild-to-moderate thrombocytopenia with minimal symptoms, with an increased risk of myeloproliferative malignancies. In our study of a family with suspected IT, three affected individuals harbored the c.-118C>T ANKRD26 variant, while four healthy members carried the c.-140C>G ANKRD26 variant. We performed a functional analysis by studying platelet-specific ANKRD26 gene expression levels using quantitative real-time polymerase-chain reaction. Functional analysis of the c.-118C>T variant showed a significant increase in ANKRD26 expression in affected individuals, supporting its pathogenicity. On the contrary, carriers of the c.-140C>G variant exhibited normal platelet counts and no significant elevation in the ANKRD26 expression, indicating the likely benign nature of this variant. Our findings provide evidence confirming the pathogenicity of the c.-118C>T ANKRD26 variant in THC2 and suggest the likely benign nature of the c.-140C>G variant.
- MeSH
- 5' nepřekládaná oblast * MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- lidé středního věku MeSH
- lidé MeSH
- mezibuněčné signální peptidy a proteiny MeSH
- rodokmen * MeSH
- trombocytopenie * genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The CYCS gene is highly evolutionarily conserved, with only a few pathogenic variants that cause thrombocytopenia-4 (THC4). Here, we report a novel CYCS variant NM_018947.6: c.59C>T [NP_061820.1:p.(Thr20Ile)] segregating with thrombocytopenia in three generations of a Czech family. The phenotype of the patients corresponds to THC4 with platelets of normal size and morphology and dominant inheritance. Intriguingly, a gradual decline in platelet counts was observed across generations. CRISPR/Cas9-mediated gene editing was used to introduce the new CYCS gene variant into a megakaryoblast cell line (MEG-01). Subsequently, the adhesion, shape, size, ploidy, viability, mitochondrial respiration, cytochrome c protein (CYCS) expression, cell surface antigen expression and caspase activity were analysed in cells carrying the studied variant. Interestingly, the variant decreases the expression of CYCS while increasing mitochondrial respiration and the expression of CD9 cell surface antigen. Surprisingly, the variant abates caspase activation, contrasting with previously known effects of other CYCS variants. Some reports indicate that caspases may be involved in thrombopoiesis; thus, the observed dysregulation of caspase activity might contribute to thrombocytopenia. The findings significantly enhance our understanding of the molecular mechanisms underlying inherited thrombocytopenia and may have implications for diagnosis, prognosis and future targeted therapies.
- MeSH
- kaspasy * metabolismus genetika MeSH
- lidé MeSH
- rodokmen MeSH
- trombocytopenie * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH