The genus Tetrahymena (Ciliophora, Oligohymenophorea) probably represents the best studied ciliate genus. At present, more than forty species have been described. All are colorless, i.e. they do not harbor symbiotic algae, and as aerobes they need at least microaerobic habitats. Here, we present the morphological and molecular description of the first green representative, Tetrahymena utriculariae n. sp., living in symbiosis with endosymbiotic algae identified as Micractinium sp. (Chlorophyta). The full life cycle of the ciliate species is documented, including trophonts and theronts, conjugating cells, resting cysts and dividers. This species has been discovered in an exotic habitat, namely in traps of the carnivorous aquatic plant Utricularia reflexa (originating from Okavango Delta, Botswana). Green ciliates live as commensals of the plant in this anoxic habitat. Ciliates are bacterivorous, however, symbiosis with algae is needed to satisfy cell metabolism but also to gain oxygen from symbionts. When ciliates are cultivated outside their natural habitat under aerobic conditions and fed with saturating bacterial food, they gradually become aposymbiotic. Based on phylogenetic analyses of 18S rRNA and mitochondrial cox1 genes T. utriculariae forms a sister group to Tetrahymena thermophila.
- MeSH
- cévnaté rostliny parazitologie MeSH
- Chlorophyta parazitologie MeSH
- Ciliophora klasifikace metabolismus fyziologie MeSH
- ekologie MeSH
- ekosystém MeSH
- fylogeneze * MeSH
- kyslík metabolismus MeSH
- mitochondrie genetika MeSH
- Oligohymenophorea klasifikace MeSH
- protozoální DNA MeSH
- RNA ribozomální 18S genetika MeSH
- rostliny parazitologie MeSH
- sekvence nukleotidů MeSH
- stadia vývoje MeSH
- symbióza fyziologie MeSH
- Tetrahymena thermophila klasifikace genetika MeSH
- Tetrahymena klasifikace cytologie izolace a purifikace metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Infections caused by the intestinal ciliate Neobalantidium coli are asymptomatic in most hosts. In humans and captive African great apes clinical infections occasionally occur, manifested mainly by dysentery; however, factors responsible for development of clinical balantidiasis have not been fully clarified. We studied the effect of dietary starch on the intensities of infection by N. coli in two groups of captive chimpanzees. Adult chimpanzees infected by N. coli from the Hodonín Zoo and from the Brno Zoo, Czech Republic, were fed with a high starch diet (HSD) (average 14.7% of starch) for 14 days, followed by a five-day transition period and subsequently with a period of low starch diet (LoSD) (average 0.1% of starch) for another 14 days. We collected fecal samples during the last seven days of HSD and LoSD and fixed them in 10% formalin. We quantified trophozoites of N. coli using the FLOTAC method. The numbers of N. coli trophozoites were higher during the HSD (mean ± SD: 49.0 ± 134.7) than during the LoSD (3.5 ± 6.8). A generalized linear mixed-effects model revealed significantly lower numbers of the N. coli trophozoites in the feces during the LoSD period in comparison to the HSD period (treatment contrast LoSD vs. HSD: 2.7 ± 0.06 (SE), z = 47.7; p<0.001). We conclude that our data provide a first indication that starch-rich diet might be responsible for high intensities of infection of N. coli in captive individuals and might predispose them for clinically manifested balantidiasis. We discuss the potential nutritional modifications to host diets that can be implemented in part to control N. coli infections.
Murein polysaccharides may contribute to a considerable part of the dry matter of bacterial cells. Their utilization by protozoa inhabiting the rumen is, however, poorly recognized. The objective of this study was to examine the ability of three species of ciliates, i.e., Eudiplodinium maggii, Diploplastron affine, and Entodinium caudatum of digest, and ferment these saccharides. The cultivation experiments showed that the enrichment of growth medium with bacterial cell wall β-glycans increased the ciliate number (p < 0.05). A statistically significant increase (p < 0.01) was followed by a continuous decrease (p < 0.01) in the percentage of individuals containing β-glycans particles after 4- and 24-h incubation of ciliates with this substrate, respectively. The enzymatic experiments confirmed the ability of the examined protozoa to digest murein. E. caudatum exhibited the highest activity (8.2 unit (U)/mg protein per min), and E. maggii, the lowest (3.0 U/mg protein per min). The production rates of volatile fatty acids by starved and fed ciliate species were 0.7 and 1.6 (E. caudatum) pmol/ciliate cell per h, 30.5 and 42.5 (E. maggii) pmol/ciliate cell per h, and 8.3 and 19.2 (D. affine) pmol/ciliate cell per h (p < 0.05).
- MeSH
- bachor parazitologie MeSH
- Bacteria chemie MeSH
- Ciliophora metabolismus MeSH
- kultivační média chemie MeSH
- kyseliny mastné těkavé metabolismus MeSH
- peptidoglykan izolace a purifikace metabolismus MeSH
- polysacharidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The ciliate Diploplastron affine is known as a common species of the rumen fauna in cattle and sheep. This protozoon is able to digest cellulose, whereas its amylolytic activity is not well known. The objective of the reported studies was to examine the ability of D. affine to digest starch and to use this polysaccharide to cover the requirement for energy. The enzymatic studies showed that the protozoal cell extract degraded starch to reducing products with the rate being equivalent to 2.4 ± 0.47 μmol/L glucose per mg protein per min. Maltose, maltotriose and a small quantity of glucose were the end products of starch degradation. The degradation rate of maltose was only 0.05 μmol/L glucose per mg protein per min. Two peaks in α-amylase and a single peak in maltase activity were found following molecular filtration of ciliate cell extract, whereas three starch-degrading enzymes were identified by a zymographic technique. Incubation of the bacteria-free ciliates with starch in the presence of antibiotics resulted in a release of volatile fatty acids with the net rate of 25 pmol per protozoan per h. Acetic acid followed by butyric acid was the main product of starch fermentation. The results confirmed the ability of D. affine to utilize starch in energy-yielding processes.
- MeSH
- bachor parazitologie MeSH
- Ciliophora enzymologie metabolismus MeSH
- fermentace MeSH
- ovce MeSH
- protozoální proteiny metabolismus MeSH
- škrob metabolismus MeSH
- trávení MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The ability of rumen ciliates to digest chitin is clearly recognized. We investigated the chitinolytic system of the rumen ciliate Eudiplodinium maggii. The ciliates were grown in a selectively faunated sheep. They were isolated from the rumen and purified by sedimentation. A crude enzyme preparation was prepared following incubation of ciliates with antibiotics. This was done in order to reduce their contamination with intracellular bacteria. The activity of particular enzymes was examined by quantification of the products released from specific substrates. It was stated that the optimum conditions for the detected activities varied between 4.5 and 5.5 pH, and 45 and 55 °C. β-N-Acetylglucosaminidase was found as an enzyme of the highest activity (4.2 μmol/l released product per mg protein per h). The activities of endochitinase and exochitinase were almost two times lower than that of β-N-acetylglucosaminidase. Zymographic studies revealed the presence of two endochitinases, two exochitinases and two β-N-acetylglucosaminidases in the examined preparation.
- MeSH
- bachor metabolismus mikrobiologie MeSH
- chitin metabolismus MeSH
- Ciliophora chemie enzymologie izolace a purifikace metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- ovce MeSH
- protozoální proteiny chemie metabolismus MeSH
- stabilita enzymů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The ability of the rumen ciliates to utilize β-glucans other than cellulose and xylan is currently being recognized. The objective of the present study was to characterize the ability of the ciliate Diploplastron affine to digest some pachyman, laminarin, pustulan, curdlan and lichean. The protozoa were isolated from the rumen of sheep and either grown in vitro or inoculated into the rumen of ciliate-free sheep and maintained in natural conditions. In vitro culture studies showed that the enrichment of culture medium with the examined saccharides results in an increase in the number of ciliates in comparison to the control cultures. The increase was over 36 and 15 % when the growth medium was supplemented with pachyman (1,3-β-glucan) and pustulan (1,6-β-glucan), respectively. A positive correlation was also found between the population density of ciliates and the dose of saccharide supplemented to the growth medium. Enzyme studies were performed using the crude enzyme preparation obtained from ciliates treated with antibiotics. The ability of ciliates to digest the examined β-glucans was tested by the quantification of reducing sugars released from the mentioned substrates during the incubation with crude enzyme preparation. The results showed that D. affine ciliates were able to digest both of them. The mean degradation rate varied between 6.7 and 28.2 μmol/L glucose per mg protein per h for pustulan and lichean, respectively, whereas the digestion velocity was the highest at 5.0-5.5 pH and 45-50°C.
- MeSH
- bachor metabolismus parazitologie MeSH
- beta-glukany metabolismus MeSH
- Ciliophora enzymologie metabolismus MeSH
- ovce MeSH
- protozoální proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The ability was determined of the rumen ciliate Eudiplodinium maggii to utilize chitin from fungal cell wall. Cultivation experiments shoved that the population concentration (number of ciliates in vitro) was positively correlated with chitin doses. Cell extract prepared from the bacteria-free ciliates degraded colloidal chitin releasing 2.0 micromol reducing sugar per mg protein per h. End products of this reaction were chitotriose and N-acetylglucosamine. Incubation of the bacteria-free ciliates with chitin resulted in an increase in the concentration of acetic, propionic and butyric acids in the incubation medium. The production rate of total volatile fatty acids (VFA) by ciliates incubated with and without chitin was 45.0 and 30.5 pmol VFA per protozoan, respectively, the molar proportion of particular acids remaining unchanged.
- MeSH
- acetylglukosamin metabolismus MeSH
- bachor parazitologie MeSH
- chitin izolace a purifikace metabolismus MeSH
- Ciliophora izolace a purifikace metabolismus MeSH
- financování organizované MeSH
- houby chemie MeSH
- kultivační média chemie MeSH
- kyselina máselná metabolismus MeSH
- kyselina octová metabolismus MeSH
- kyseliny mastné těkavé metabolismus MeSH
- ovce MeSH
- propionáty metabolismus MeSH
- trisacharidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
Rumen ciliate protozoa intensively engulf bacteria. However, their ability to utilize murein which is the main polysaccharide of bacterial cell wall has hardly been recognized. The present study concerns the ability of the rumen protozoa Diploplastron affine to digest and ferment murein. The ciliates were isolated from the rumen fluid and grown in vitro or inoculated into the rumen of defaunated sheep. The results of long-term cultivation of protozoa showed a positive correlation between their number and murein content in the culture medium. It was also found that bacteria-free D. affine ciliates incubated with or without murein produced volatile fatty acids at the rate of 12.3 and 8.7 pmol/h per protozoan, respectively, acetic, butyric and propionic acids being the three main acids released to the medium. Enzyme studies performed with the use of protozoan cell extract prepared from bacteria-free ciliates degraded murein at a rate of 25 U/mg protein per h; two mureinolytic enzymes were identified by zymographic technique in the examined preparation.