INTRODUCTION: The ongoing conflict in Ukraine from Russian invasion presents a critical challenge to medical planning in the context of multi-domain battle against a peer adversary deploying conventional weapon systems. The potential escalation of preventable morbidity and mortality, reaching a scale unprecedented since World War II, underscores the paramount importance of effective phases of care from Point of Injury (PoI)/Point of Wounding (PoW) or Point of Exposure (PoE) to Role 1 (R1) and Role 2 (R2) echelons of care.The NATO Vigorous Warrior (VW) Live Exercise (LIVEX) serves as a strategic platform for NATO and its partners, providing an opportunity to challenge operational concepts, experiment, innovate life-saving systems, and foster best practices across the Alliance. MATERIALS AND METHODS: This study delineates the strategic application of the VW LIVEX platform for the adaptation of the computational simulation software Simulation for the Assessment and Optimization of Medical Disaster Management (SIMEDIS) within the context of Large-Scale Combat Operations (LSCO). The SIMEDIS computer simulator plays a pivotal role by furnishing real-time insights into the evolving injury patterns of patients, employing an all-hazards approach. This simulator facilitates the examination of temporal shifts in medical timelines and the ramifications of resource scarcity against both morbidity and mortality outcomes. The VW LIVEX provides a unique opportunity for systematic validation to evaluate the results of the computer simulator in a realistic setting and identify gaps for future concepts of operations. RESULTS: We report the process and methodologies to be evaluated at the VW LIVEX in far forward and retrospective medical support operations. Using the SIMEDIS simulator, we can define battlefield scenarios for varied situations including artillery, drone strikes, and Chemical, Biological, Radiological, Nuclear, and explosive (CBRNe) attacks. Casualty health progressions versus time are dependent on each threat. Mortality is computed based on the concepts found in Tactical Combat Casualty Care (TCCC) of "self-aid"/"buddy-aid" factoring in the application or absence of definitive traumatic hemorrhage control and on the distribution policy of victims to medical treatment facilities through appropriate Command and Control (C2) ("Scoop and Run" versus "Stay and Play"). The number of medical supplies available along with the number of transport resources and personnel are set and are scalable, with their effect on both morbidity and mortality quantified.Concept of Medical Operations can be optimized and interoperability enhanced when shared data are provided to C2 for prospective medical planning with retrospective data. The SIMEDIS simulator determines best practices of medical management for a myriad of injury types and tactical/operational situations relevant to policy making and battlefield medical planning for LSCO. CONCLUSIONS: The VW LIVEX provides a Concept Development and Experimentation platform for SIMEDIS refinement and conclusive insights into medical planning to reduce preventable morbidity and mortality. Recommending further iterations of similar methodologies at other NATO LIVEXs for validation is crucial, as is information sharing across the Alliance and partners to ensure best practice standards are met.
- MeSH
- Humans MeSH
- Computer Simulation * trends standards statistics & numerical data MeSH
- Warfare statistics & numerical data MeSH
- Military Medicine methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Ukraine MeSH
- Keywords
- haptické trenažéry,
- MeSH
- Humans MeSH
- Computer Simulation trends MeSH
- Education, Dental * methods trends MeSH
- Check Tag
- Humans MeSH
- Publication type
- Overall MeSH
- Keywords
- penetrační testování,
- MeSH
- Confidentiality trends MeSH
- Information Systems organization & administration MeSH
- Pathology, Clinical instrumentation MeSH
- Medical Informatics Computing * trends MeSH
- Humans MeSH
- Computer Simulation * trends MeSH
- Access to Information MeSH
- Computer Security instrumentation trends legislation & jurisprudence MeSH
- Check Tag
- Humans MeSH
Virtuální realita (VR) je technologie, která umožňuje simulovat realistické prostředí a interakci uživatele s ním. Nejčastější způsob, jakým je simulované prostředí prezentováno uživateli, je tzv. projekční helma (Head Mounted Display, HMD). Využití VR v psychiatrii je zkoumáno již od 90. let 20. století, byl to ale teprve rozvoj technologie v posledních letech a s tím spojená větší finanční dostupnost, které zájem o VR výraznou měrou zvýšily. Aplikace VR v psychiatrii využívají především následující vlastnosti této technologie: navození pocitu přítomnosti (presence) v simulovaném prostředí, poskytnutí libovolných vjemů, manipulace se senzorickými modalitami a možnost měření chování uživatele. Stěžejní vlastnost, která nejvíce odděluje VR od jiných médií, je právě navození pocitu přítomnosti, který může zvyšovat dopad prezentovaných stimulů na uživatele. Největší množství literatury se zabývá možností využití této technologie jako intervencí, které zahrnují terapii, rehabilitaci, zvyšování kvality života, prevenci a profylaxi. Z intervencí se pak nejčastěji využívají implementace postupů kognitivně-behaviorální terapie (KBT) a zejména pak expoziční terapie ve VR (VRET). Druhá nejčastější oblast, která je zkoumána, je možné využití VR v diagnostice a hodnocení tíže symptomů psychiatrických poruch. Tato skupina aplikací využívá možnost měřit chování uživatele ve virtuálním prostředí. VR může být využita jako prostředek objektivní a ekologicky validní diagnostiky. Třetím potenciálním využitím je výzkum duševních poruch, jejich patofyziologie, ale také vlastností VR ve vztahu k duševním poruchám. Poslední skupinou využití je trénink a edukace. V této skupině aplikací může být VR využita k tréninku zdravotnických specialistů nebo k edu-kaci o duševních poruchách. Nejvíce je zkoumáno VR u úzkostných poruch, a to většinou jako intervenční postup, konkrétněji VRET. Podobné aplikace se týkají také poruch vyvolaných stresem a návykových poruch. U psychotických poruch je VR využívána hlavně pro výzkum. Relativně velké množství aplikací se věnuje poruchám příjmu potravy, kognitivnímu deficitu, autismu a poruchám pozornosti s hyperaktivitou. Naopak minimum aplikací se týká obsedantně-kompulzivní poruchy, afektivních poruch a poruch osobnosti. Limitace použití VR u pacientů s psychiatrickými poruchami nejsou plně prozkoumané. První možné omezení může vyplývat z nežádoucích účinků VR. Nejčastěji uváděný nežádoucí účinek je VR nevolnost. Z recentní literatury je patrné, že mohou existovat i jiné nežádoucí účinky, například ?následky po expozici? VR (angl. aftereffects), které mohou být vizuální a kognitivní. Dále je patrné, že stále plně neznáme jazyk VR jako média - není jasné, jaký je vztah mezi účinností aplikací, intenzitou pocitu přítomnosti a způsobem prezentace stimulů. Hlavním problémem aktuální literatury ohledně VR je obecně nízká metodologická kvalita studií, možné publikační bias, časté využívání čekacích listin jako kontrol. Autoři často nedostatečně referují o technickém zpracování VR aplikací a o použitém hardwaru. S tím souvisí omezená standardizace použitého hardwaru a softwaru. Pravdou také je, že zatím byly v psychiatrii využity jen konceptuálně jednodušší aplikace. Zatím se jeví, že VR může nalézt využití v pochopení, diagnostice i terapii řady duševních poruch. K širšímu využití v psychiatrii musí VR ještě dozrát jak po stránce technické, tak po stránce metodologické a konceptuální. Vzhledem k možnostem technologie a současnému stavu poznání je VR vděčným cílem pro další výzkum.
Virtual reality (VR) is a technology which allows simulation of a realistic computer-generated environment and user interaction with it. The most common means to present the simulated stimuli is HMD (Head Mounted Display). VR applications in psychiatry have been a focus of research since 1990 ́s, however, it was a recent development and improved availability of this technology that lead to increased attention to this topic. Applications of VR in psychiatry utilise following attributes: induction of the sense of presence, presentation of any stimuli, manipulation with sensor modalities and measurement of user be-haviour. The key attribute distinguishing VR from other ways of stimuli presentation is the sense of presence which can increase the effect of presented stimuli on the user. The largest body of literature about VR in psychiatry deals with interventions including therapy, rehabilitation, quality of life improvement, prevention and prophylaxis. The most common therapeutical interventions are Cognitive-Behavioral therapy (CBT) techniques implementations, especially Virtual Reality Exposure Therapy (VRET). The second most explored field is an assessment which takes advantage of a possibility to measure user behaviour. VR could be used as a tool for objective and ecologically valid assessment. The third possible use of the VR in psychiatry is the research of mental disorders, their pathophysiology and their relationship to the VR. The last group of applications includes training of mental health professionals and education about mental disorders. Anxiety disorders are the most frequent target of the VR applications, mostly as interventions, usually VRET. A similar situation is in stress-related disorders and addictions. In psychotic disorders, VR is used usually for research. A relatively high number of applications deal with eating disorders, cognitive impairment, autism and atten-tion deficit and hyperactivity disorder. On the other side, VR is used minimally in obsessive-compulsive disorder, affective disorders and personality disorders. Limitations of VR utilisation in psychiatry are not fully explored. The first possible limitation could stem from VR adverse reactions. VR sickness is the most often mentioned adverse reaction. In recent literature, there are how-ever notions about others, for example, "aftereffects" which could be visual or cognitive. It should also be noted that the language of VR as a medium is not fully known. There is a lack of accurate description of relationships between the effects of the VR application, the intensity of the sense of presence and ways of stimuli presentation. The main problem of actual literature on this topic is low methodological quality, possible publication bias and frequent use of waitlist controls. Authors often do not describe technological specifications which are related to reduced hardware and software standardisation. The truth also is that to this date mostly only conceptually simple applications have been explored. It appears that VR could find its place in understanding, diagnostics and therapy of several mental disorders. To reach full potential, this technology still has to mature methodologically and conceptually. Considering the possibilities of the VR in psychiatry and current state of knowledge, VR can be an exciting focus for further research.
- MeSH
- Autistic Disorder therapy MeSH
- Mental Disorders * diagnosis classification therapy MeSH
- Cognitive Dysfunction therapy MeSH
- Humans MeSH
- Nausea etiology MeSH
- Behavior, Addictive therapy MeSH
- Computer Simulation trends MeSH
- Mood Disorders therapy MeSH
- Feeding and Eating Disorders therapy MeSH
- Psychiatry methods education MeSH
- Anxiety Disorders therapy MeSH
- Virtual Reality * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Tato práce shrnuje poznatky z oblasti simulační techniky využívající podporu virtuální reality jako vzdělávací a tréninkovou pomůcku v oblasti intervenční kardiologie. Autoři se věnují historickému vývoji, současnými možnostem, formám simulačních modalit, jejich výhodám, nevýhodám a limitacím. Dosud publikované studie ukazují, že simulátory jsou užitečným prostředkem pro hodnocení a trénink dovedností operatéra. Vzájemné srovnání těchto studií je však pro jejich různorodost obtížné. Neexistuje dostatek prací, které kvantifikují přínos simulačního tréninku do reálné klinické praxe či srovnávají výsledky simulačního tréninku s konvenčním.
This document summarizes the knowledge based on virtual reality simulations used as a learning and training instrument in interventional cardiology. The authors focus on historical development, current possibilities, forms, advantages, disadvantages, and limitations of various simulation modalities. The studies published so far have shown that simulators are useful tools for the assessment and training of operator skills. However, a comparison of these studies is difficult because of their diversity. There are not enough studies quantifying the benefits of simulation training in real clinical practice or comparing the results of simulation training with the conventional one.
- MeSH
- Computer Simulation trends MeSH
- Nurse Midwives * education MeSH
- Virtual Reality MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Slovakia MeSH
Introduction: The article is aimed to highlight usage of innovative teaching methods within simulation education in the professional training of nurses abroad and to present our experience based on passing intensive study programme at School of Nursing, Midwifery and Social Work, University of Salford (United Kingdom, UK) within Intensive EU Lifelong Learning Programme (LPP) Erasmus EU RADAR 2013. Methods: Implementation of simulation methods such as role-play, case studies, simulation scenarios, practical workshops and clinical skills workstation within structured ABCDE approach (AIM© Assessment and Management Tool) was aimed to promote the development of theoretical knowledge and skills to recognize and manage acutely deteriorated patients. Structured SBAR approach (Acute SBAR Communication Tool) was used for the training of communication and information sharing among the members of multidisciplinary health care team. OSCE approach (Objective Structured Clinical Examination) was used for student’s individual formative assessment. Results: Simulation education is proved to have lots of benefits in the professional training of nurses. It is held in safe, controlled and realistic conditions (in simulation laboratories) reflecting real hospital and community care environment with no risk of harming real patients accompanied by debriefing, discussion and analysis of all activities students have performed within simulated scenario. Such learning environment is supportive, challenging, constructive, motivated, engaging, skilled, flexible, inspiring and respectful. Thus the simulation education is effective, interactive, interesting, efficient and modern way of nursing education. Conclusion: Critical thinking and clinical competences of nurses are crucial for early recognition and appropriate response to acute deterioration of patient’s condition. These competences are important to ensure the provision of high quality nursing care. Methods of simulation education used within professional training of next generation of nurses can help them to get used to the recognition and management of this group of patients by the means of simulated cases to be able to implement the approaches trained within real clinical nursing practice.