mikroRNA (miRNA, miR) jsou malé nekódující molekuly RNA, které se podílejí na regulaci genové exprese a zasahují prakticky do všech myslitelných signálních, metabolických či regulačních okruhů, čímž se podílejí na udržování homeostázy. Jejich hladiny se mění vlivem vnějších stimulů či při přítomnosti nemoci, a to nejen ve tkáních, ale i v tělních tekutinách (v krvi, moči). Jedna miRNA je často zapojena do regulace více signálních drah, ať již funkčně propojených či zcela nezávislých, čímž nám umožňují nové pohledy na patofyziologii nemocí a přináší nové cíle pro terapii. Přítomnost miRNA v extracelulárním prostoru dělá z miRNA potenciální nové biomarkery různých nemocí použitelných při diagnostice, odhadu prognózy nebo rizikové stratifikaci pacientů. V rámci tohoto souhrnného článku jsou uvedeny základní informace týkající se miRNA a jejich funkce a poté u vybraných nemocí popsány konkrétní miRNA, které jsou zapojeny do jejich patofyziologie nebo které by mohly být potenciálně využitelné v klinické praxi.
MicroRNAs (miRNAs, miRs) are small, non-coding RNA molecules that are involved in the regulation and fine-tuning of gene expression. They regulate almost all thinkable signalling pathways and thus participate in the maintenance of homeostasis. The levels of individual miRNAs are affected by various external stimuli and they also change in the presence of diseases; these changes can be detected in tissues and bodily fluids (i.e. blood or urine). One miRNA commonly regulates more signalling cascades, either interconnected or independent, and this enables us to better understand the pathophysiology of cardiovascular diseases and reveal novel targets for therapy. Moreover, the presence of miRNAs in the extracellular space makes them potentially usable as diagnostic or prognostic biomarkers of various diseases that can be employed in differential diagnostics and risk stratification of individual patients. This review article summarises basic information about miRNAs and their function. Further, selected miRNAs and their roles in the pathophysiology of some cardiovascular diseases will be described, focusing on those potentially usable in clinical practice.
- MeSH
- ateroskleróza diagnóza etiologie patofyziologie MeSH
- diferenciální diagnóza MeSH
- extracelulární prostor fyziologie genetika MeSH
- fibrilace síní diagnóza patofyziologie MeSH
- hypertenze diagnóza etiologie MeSH
- kardiovaskulární nemoci MeSH
- lidé MeSH
- mikro RNA * biosyntéza klasifikace terapeutické užití MeSH
- nemoci srdečních chlopní diagnóza patofyziologie MeSH
- prognóza MeSH
- rizikové faktory MeSH
- srdeční selhání diagnóza etiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- souhrny MeSH
Primární řasinka je senzorická buněčná organela, která se v klidové fázi buněčného cyklu vyskytuje u většiny lidských buněk, včetně buněk embryonálních, kmenových a buněk stromatu nádoru. Přítomnost primární řasinky na povrchu buňky je přechodná: vyskytuje se v klidové G1 (G0) fázi a na počátku S fáze buněčného cyklu. Bazálním tělískem primární řasinky je mateřská centriola. U většiny nádorových buněk se primární řasinka nevyskytuje. Výjimkou jsou nádory, které jsou závislé na signální dráze Hedgehog a tím i na primární řasince, jako například bazocelulární karcinom kůže či meduloblastom. Primární řasinka je pozorována i u trojitě negativního karcinomu prsu. V primárních řasinkách je přítomna řada receptorů, včetně mechanosenzorů, receptorů pro růstové faktory (EGFR, PDGFR), hormony (somatostatin), biologicky aktivní látky (serotonin) a morfogeny (Hedgehog, Wnt). V primární řasince se vyskytují signální dráhy Hedgehog a Wnt. U těch typů lidských buněk, které mají primární řasinku – tedy u naprosté většiny buněk, se signální dráhy Hedgehog a Wnt vyskytují výlučně právě jen v primární řasince. Cílem tohoto sdělení je přehled biologických funkcí primárních řasinek.
The primary cilium is a sensory organelle protruding in the quiescent phase of the cell cycle from the surface of the majority of human cells, including embryonic cells, stem cells and stromal cells of malignant tumors. The presence of primary cilium on the cell surface is transient, limited to the quiescent G1 (G0) phase, as well as the beginning of the S phase of the cell cycle. Primary cilium is formed from the centriole. Most cancer cells do not posses the primary cilium, with some exceptions, such as tumors depending on the Hedgehog pathway -e.g. basal cell carcinoma or medulloblastoma. The primary cilium is present also in cells of triple negative breast carcinoma. Primary cilia are equiped with a variety of receptors, including mechanosensors, receptors for growth factors (EGFR, PDGFR), hormones (somatostatin), biologically active substances (serotonin) and morphogens (Hedgehog, Wnt). Multiple components of Hedgehog and Wnt pathways are localized in the primary cilium. In the human cells possessing the primary cilium (majority of the human cells) Hedgehog and Wnt pathways are located exclusively in primary cilium. The aim of this paper is review of the current knowledge of the biological functions of the primary cilia.
- Klíčová slova
- nádorové buňky, EGFR, PDGFR, Hedgehog, Wnt,
- MeSH
- buněčný cyklus fyziologie MeSH
- centrioly fyziologie MeSH
- cilie fyziologie metabolismus MeSH
- erbB receptory fyziologie MeSH
- extracelulární prostor fyziologie MeSH
- financování organizované MeSH
- fyziologie buňky MeSH
- lidé MeSH
- nádorová transformace buněk MeSH
- proteiny hedgehog fyziologie MeSH
- proteiny Wnt fyziologie MeSH
- růstový faktor odvozený z trombocytů - receptor alfa fyziologie MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- přehledy MeSH
Most hypotheses concerning the mechanisms underlying seizure activity in focal cortical dysplasia (FCD) are based on alterations in synaptic transmission and glial dysfunction. However, neurons may also communicate by extrasynaptic transmission, which was recently found to affect epileptiform activity under experimental conditions and which is mediated by the diffusion of neuroactive substances in the extracellular space (ECS). The ECS diffusion parameters were therefore determined using the real-time iontophoretic method in human neocortical tissue samples obtained from surgically treated epileptic patients. The obtained values of the extracellular space volume fraction and tortuosity were then correlated with the histologicaly assessed type of cortical malformation (FCD type I or II). While the extracellular volume remained unchanged (FCD I) or larger (FCD II) than in normal/control tissue, tortuosity was significantly increased in both types of dysplasia, indicating the presence of additional diffusion barriers and compromised diffusion, which might be another factor contributing to the epileptogenicity of FCD.
- MeSH
- dítě MeSH
- dospělí MeSH
- epilepsie patologie MeSH
- extracelulární prostor fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- malformace mozkové kůry patologie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozková kůra abnormality patologie MeSH
- neurony patologie fyziologie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- diagnostické zobrazování metody přístrojové vybavení využití MeSH
- difuzní magnetická rezonance metody využití MeSH
- elastografie metody přístrojové vybavení využití MeSH
- extracelulární prostor fyziologie metabolismus MeSH
- fyziologie buňky MeSH
- jednofotonová emisní výpočetní tomografie metody využití MeSH
- lékařská onkologie metody přístrojové vybavení trendy MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody využití MeSH
- metabolismus MeSH
- mikropartikule fyziologie metabolismus patologie MeSH
- nádory diagnóza etiologie metabolismus MeSH
- perfuzní zobrazování metody využití MeSH
- počítačová rentgenová tomografie metody využití MeSH
- pozitronová emisní tomografie metody využití MeSH
- tělesná voda metabolismus MeSH
- Check Tag
- lidé MeSH
The diffusion of neuroactive substances in the extracellular space (ECS) plays an important role in short- and long-distance communication between nerve cells and is the underlying mechanism of extrasynaptic (volume) transmission. The diffusion properties of the ECS are described by three parameters: 1. ECS volume fraction alpha (alpha=ECS volume/total tissue volume), 2. tortuosity lambda (lambda2=free/apparent diffusion coefficient), reflecting the presence of diffusion barriers represented by, e.g., fine neuronal and glial processes or extracellular matrix molecules and 3. nonspecific uptake k'. These diffusion parameters differ in various brain regions, and diffusion in the CNS is therefore inhomogeneous. Moreover, diffusion barriers may channel the migration of molecules in the ECS, so that diffusion is facilitated in a certain direction, i.e. diffusion in certain brain regions is anisotropic. Changes in the diffusion parameters have been found in many physiological and pathological states in which cell swelling, glial remodeling and extracellular matrix changes are key factors influencing diffusion. Changes in ECS volume, tortuosity and anisotropy significantly affect the accumulation and diffusion of neuroactive substances in the CNS and thus extrasynaptic transmission, neuron-glia communication, transmitter "spillover" and synaptic cross-talk as well as cell migration, drug delivery and treatment.
- MeSH
- anizotropie MeSH
- centrální nervový systém fyziologie MeSH
- difuze MeSH
- extracelulární prostor fyziologie MeSH
- krysa rodu rattus MeSH
- lékové transportní systémy MeSH
- lidé MeSH
- myši transgenní MeSH
- myši MeSH
- neuroglie fyziologie MeSH
- neurony fyziologie MeSH
- pohyb buněk fyziologie MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is approximately 20% and the tortuosity is approximately 1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.
- MeSH
- difuze MeSH
- extracelulární prostor fyziologie chemie MeSH
- financování organizované MeSH
- kvartérní amoniové sloučeniny diagnostické užití MeSH
- lidé MeSH
- mozek - chemie fyziologie MeSH
- mozek cytologie fyziologie MeSH
- neuroglie fyziologie MeSH
- neurony fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- přehledy MeSH
Velikost, geometrie a složení extracelulámího prostoru (ECP) hrají důležitou roli v ovlivňování biologického chováni primárních mozkových nádorů. Pomocí metod, které popisem difuze molekul v ECP umožňují stanovit velikost a geometrii ECP, bylo zjištěno, že velikost ECP je u gliomů významně zvětšená oproti nepostižené mozkové kůře. Dále bylo ukázáno, že zvětšování podílu ECP na celkovém objemu tkáně je přímo úměrné rostoucí proliferační aktivitě astrocytomů a paradoxně i zvyšující se buněčnosti nádorů. Zvětšení objemu ECP ve tkáních mozkových nádorů je překvapivě doprovázeno výrazným nárůstem překážek v difúzi molekul takto zvětšeným mezibuněčným prostorem. Difúzni bariéry v mezibuněčném prostoru astrocytomů s nízkým stupněm malignity vytváří zejména síť z výběžků nádorových buněk. Méně větvené a zkrácené výběžky buněk u agresivnějších astrocytomů hrají menší roli a zmnožení difuzních bariér v ECP působí nadměrná produkce některých komponent extracelulámí matrix (ECM), zejména tenascinu. Nádorem produkované glykoproteiny ECM jsou potom substrátem pro adhezi a migraci nádorových buněk zvětšeným mezibuněčným prostorem, zároveň však mohou výrazně omezovat difúzi léčiv do nádorové tkáně. Mezi přítomnosti tenascinu v ECP nádorů a agresivním chováním gliových nádorů mozku byla nalezena dobrá korelace, což činí imunohistochemický průkaz tohoto glykoproteinu i diagnosticky užitečným jako prognostický marker a ukazatel větší biologické agresivity gliomů.
The size, geometry and composition of the extracellular space (ECS) play an important role in influencing the biological behavior of primary brain tumors. Experiments employing the realtime TMA iontophoretic method to determine the size and geometry of the ECS, by monitoring the diffusion of TMA ions in the ECS, revealed a dramatic increase in ECS size in brain neoplasms when compared with that of unaffected brain cortex. Further, the increase of ECS volume in tumors was shown to correlate with increasing proliferative activity and increasing cellularity of astrocytomas. The increase in ECS size was surprisingly accompanied by a significant increase in diffusion barriers, slowing the diffusion of molecules in the ECS of tumors. In low-grade tumors, diffusion is hindered by the presence of a dense net of tumor cell processes. In high-grade gliomas, in which the cellular processes are shortened with reduced branching, the increase in diffusion barriers is caused by the overproduction of specific components of the extracellular matrix (ECM) by the tumor cells, mainly tenascin. The ECM glycoproteins produced represent a substrate for the subsequent adhesion and migration of tumor cells through the enlarged ECS. However, they might also critically reduce the diffusion of therapeutics into the tumor. The presence of tenascin in the ECS of a neoplasm correlates significantly with the increased malignancy of the tumor and a poor clinical outcome of the disease, thus making the immunohistochemical detection of tenascin diagnostically useful as a prognostic marker and a marker of aggressive biological behavior of tumors.