- MeSH
- chybná diagnóza MeSH
- COVID-19 diagnóza virologie MeSH
- indikátory a reagencie chemie MeSH
- lidé MeSH
- limita detekce MeSH
- nazofarynx virologie MeSH
- odběr biologického vzorku normy MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- RNA virová genetika metabolismus MeSH
- SARS-CoV-2 genetika izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
New open-chain and water-soluble hypervalent iodine reagents were synthesized and used for the transfer of fluoroalkyl groups to sulfur atoms of cysteine and cysteine-containing peptides under biocompatible conditions. Some of the reagents displayed excellent reactivity despite their limited stability in aqueous media. In reactions with a short cysteine-containing peptide, in addition to the expected S-fluoroalkylated product, a range of side-products were obtained. The amount of side-products depended on the conditions used (type of reagent, concentration, and pH). With highly activated hypervalent iodine reagents, a new reactive mode was observed - reaction with disulfides to form fluoroalkyl thiols.
- MeSH
- alkylace MeSH
- fluorované uhlovodíky chemická syntéza chemie MeSH
- indikátory a reagencie chemická syntéza chemie MeSH
- jod chemie MeSH
- molekulární struktura MeSH
- rozpustnost MeSH
- sulfhydrylové sloučeniny chemie MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this paper, we describe the labelling of antibodies by gold nanoparticles (AuNPs) with diameters of 10 and 60 nm with detection by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Additionally, the AuNPs labelling strategy is compared with commercially available labelling reagents based on MeCAT (metal coded affinity tagging). Proof of principle experiments based on dot blot experiments were performed. The two labelling methods investigated were compared by sensitivity and limit of detection (LOD). The absolute LODs achieved were in the range of tens of picograms for AuNP labelling compared to a few hundred picograms by the MeCAT labelling.
- MeSH
- hmotnostní spektrometrie metody MeSH
- imunoanalýza metody MeSH
- indikátory a reagencie chemie MeSH
- kovové nanočástice chemie MeSH
- lasery * MeSH
- limita detekce MeSH
- ověření koncepční studie MeSH
- protilátky chemie MeSH
- specificita protilátek MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
A new high-performance liquid chromatography method using fused-core column for fast separation of resveratrol and polydatin has been developed and used for quality control of nutraceuticals with resveratrol and polydatin content. Retention characteristics (log k) were studied under different conditions on C-18, RP-Amide C-18, Phenyl-hexyl, Pentafluorophenyl (F5) and Cyano stationary phases for both compounds. The effect of the volume fraction of acetonitrile on a retention factors log k of resveratrol and polydatin were evaluated. The optimal separation conditions for resveratrol, polydatin and internal standard p-nitrophenol were found on the fused-core column Ascentis Express ES-Cyano (100×3.0mm), particle size 2.7μm, with mobile phase acetonitrile/water solution with 0.5% acetic acid pH 3 (20:80, v/v) at a flow rate of 1.0mL/min and at 60°C. The detection wavelength was set at 305nm. Under the optimal chromatographic conditions, good linearity with regression coefficients in the range (r=0.9992-0.9998; n=10) for both compounds was achieved. Commercial samples of nutraceuticals were extracted with methanol using ultrasound bath for 15min. A 5μL sample volume of the filtered solution was directly injected into the HPLC system. Accuracy of the method defined as a mean recovery was in the range 83.2-107.3% for both nutraceuticals. The intraday method precision was found satisfactory and relative standard deviations of sample analysis were in the range 0.8-4.7%. The developed method has shown high sample throughput during sample preparation process, modern separation approach, and short time (3min) of analysis. The results of study showed that the declared content of resveratrol and polydatin varied widely in different nutraceuticals according the producers (71.50-115.00% of declared content).
- MeSH
- acetonitrily chemie MeSH
- glukosidy chemie MeSH
- indikátory a reagencie chemie MeSH
- nitrofenoly chemie MeSH
- potravní doplňky analýza MeSH
- řízení kvality MeSH
- roztoky chemie MeSH
- stilbeny chemie MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Four phenyl-bonded stationary phases, differing in polar embedded group between spacer and phenyl ring, were used for the separation of flavonoids in reversed-phase conditions. In addition, the work was focused on the comparison of these stationary phases in terms of retention and nature of interactions between flavonoid solutes and both, mobile and stationary phases. The differences and similarities between the columns and between individual flavonoids were evaluated by a statistical analysis. The retention over the wider range of mobile phase composition was described using well known model suggested for partition chromatographic systems. Due to differences in polarity of flavonoids, gradient elution had to be applied to achieve appropriate conditions for the successful separation. A chromatographic optimization software was employed for establish the appropriate profiles of gradient separations using UV detection at 275 nm. The most appropriate conditions for the separation of flavonoids were apparent on the phenyl and phenoxy columns.
The straightforward synthesis of sodium 4-toluenesulfonyloxymethyl-(H)-phosphinate and (H)-phosphinomethylisothiouronium tosylate as new reagents for the preparation of O- and S-methyl-(H)-phosphinic acid derivatives, respectively, is described. The reactivity of both reagents was demonstrated by the preparation of protected 2'-deoxyribonucleoside-O-methyl-(H)-phosphinates in the 5'- and 3'-series and 2',5'-dideoxyribonucleoside-5'-S-methyl-(H)-phosphinates. These compounds represent a new class of monomers compatible with the solid phase synthesis of oligonucleotides by H-phosphonate chemistry, as it was proved with the synthesis of a fully phosphonate heptamer.
The presented work describes the development of a simple, fast and effective on-line SPE-UHPLC-UV/vis method using fused core particle columns for extraction, separation and quantitative analysis of the nine illegal dyes, most frequently found in chilli-containing spices. The red dyes Sudan I-IV, Sudan Red 7B, Sudan Red G, Sudan Orange G, Para Red, and Methyl Red were separated and analyzed in less than 9 min without labor-consuming pretreatment procedure. The chromatographic separation was performed on Ascentis Express RP-Amide column with gradient elution using mixture of acetonitrile and water, as a mobile phase at a flow rate of 1.0 mL min(-1) and 55°C of temperature. As SPE sorbent for cleanup and pre-concentration of illegal dyes short guard fused core column Ascentis Express F5 was used. The applicability of proposed method was proven for three different chilli-containing commercial samples. Recoveries for all compounds were between 90% and 108% and relative standard deviation ranged from 1% to 4% for within- and from 2% to 6% for between-day. Limits of detection showed lower values than required by European Union regulations and were in the range of 3.3-10.3 µg L(-1) for standard solutions, 5.6-235.6 µg kg(-1) for chilli-containing spices.
- MeSH
- analýza potravin metody MeSH
- azosloučeniny chemie MeSH
- barvicí látky chemie izolace a purifikace MeSH
- Capsicum chemie MeSH
- extrakce na pevné fázi metody MeSH
- indikátory a reagencie chemie MeSH
- koření analýza MeSH
- naftoly chemie MeSH
- on-line systémy MeSH
- potravinářská barviva chemie MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The time required to visualize proteins using Coomassie Blue dye has been significantly reduced with the introduction of fast staining protocols based on staining with a Coomassie Blue dye solution at boiling temperatures. However, fast stainings suffer from high gel backgrounds, reducing the signal-to-noise ratio and limiting the number of detectable spots in the case of 2D SDS-PAGE. The aim of this work was to eliminate the high gel background, and thus improve fast staining protocols based on Coomassie Blue dye. We show that merely replacing water with a 4 mM EDTA washing solution at boiling temperatures, results in a transparent gel background within 50 to 60 minutes of destaining. Moreover, when a combination of imidazole-zinc reverse staining and Coomassie Blue-based fast staining is used the sensitivity is improved significantly; nanogram amounts of proteins can be detected using 1D SDS-PAGE, and about 30% to 60% more spots can be detected with 2D SDS-PAGE in plasma, platelet, and rat brain tissue samples. This work represents an optimized fast staining protocol with improved sensitivity, requiring between 60 to 75 minutes to complete protein visualization.
Fibrinogen is one of the plasma proteins most susceptible to oxidative modification. It has been suggested that modification of fibrinogen may cause thrombotic/bleeding complications associated with many pathophysiological states of organism. We exposed fibrinogen molecules to three different modification reagents-malondialdehyde, sodium hypochlorite, and peroxynitrite-that are presented to various degrees in different stages of oxidative stress. We studied the changes in fibrin network formation and platelet interactions with modified fibrinogens under flow conditions. The fastest modification of fibrinogen was caused by hypochlorite. Fibers from fibrinogen modified with either reagent were thinner in comparison with control fibers. We found that platelet dynamic adhesion was significantly lower on fibrinogen modified with malondialdehyde and significantly higher on fibrinogen modified either with hypochlorite or peroxynitrite reflecting different prothrombotic/antithrombotic properties of oxidatively modified fibrinogens. It seems that, in the complex reactions ongoing in living organisms at conditions of oxidation stress, hypochlorite modifies proteins (e.g., fibrinogen) faster and more preferentially than malondialdehyde. It suggests that the prothrombotic effects of prior fibrinogen modifications may outweigh the antithrombotic effect of malondialdehyde-modified fibrinogen in real living systems.
- MeSH
- adhezivita trombocytů účinky léků fyziologie MeSH
- chlornan sodný farmakologie MeSH
- fibrinogen chemie metabolismus farmakologie MeSH
- indikátory a reagencie chemie farmakologie MeSH
- kultivované buňky MeSH
- kyselina peroxydusitá chemie MeSH
- lidé MeSH
- malondialdehyd chemie farmakologie MeSH
- oxidační stres účinky léků fyziologie MeSH
- trombocyty účinky léků metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Correct identification of P forms together with their main Fe and Al binding partners in non-calcareous sediments is of crucial importance for evaluation of P cycling in water bodies. In this paper, we assess extraction methods frequently used for this purpose, i.e., a sequential five-step fractionation (water, bicarbonate buffered dithionite solution (BD), NaOH, HCl, nitric-perchloric acid), ascorbate extraction (pH ~7.5), and oxalate extraction (pH ~3), directly on a range of laboratory prepared Fe and Al minerals enriched with adsorbed P. Extraction selectivity and efficiency for particular P, Fe and Al forms were also verified by specific combinations of these extraction methods applied on freshwater sediment samples. In the sequential fractionation, BD was highly effective in dissolving both amorphous and crystalline Fe (hydr)oxides and the associated P, while neither FeS nor Al (hydr)oxides were dissolved. The following NaOH extraction effectively dissolved both amorphous and crystalline Al (hydr)oxides. The high solubilizing power of BD and NaOH to dissolve crystalline Fe and Al oxides that have only a small P-sorption ability prevents the use of resulting Fe/P and Al/P ratios as simple predictors of total P sorption capacity of sediments and soils. Ascorbate non-selectively extracted small proportions of FeS and amorphous Fe and Al (hydr)oxides, but significant amounts of adsorbed P, which hinders its use for the characterization of P forms in non-calcareous sediments. Similar nonselective characteristics were found for oxalate extractions. As oxalate extracts most of the adsorbed phosphate, it is not possible to use it unambiguously to determine specific Fe/P and Al/P ratios of active complexes. However, this method is convenient (and more selective than NaOH step in the sequential fractionation) for the determination of amorphous Al (hydr)oxides.
- MeSH
- adsorpce MeSH
- chemická frakcionace metody MeSH
- fosfor analýza chemie izolace a purifikace MeSH
- geologické sedimenty chemie MeSH
- hydroxid sodný chemie MeSH
- indikátory a reagencie chemie MeSH
- kvalita vody MeSH
- kyselina oxalová chemie MeSH
- minerály analýza chemie izolace a purifikace MeSH
- reprodukovatelnost výsledků MeSH
- rozpustnost MeSH
- sladká voda chemie MeSH
- sloučeniny hliníku analýza chemie izolace a purifikace MeSH
- sloučeniny železa analýza chemie izolace a purifikace MeSH
- vodní zdroje analýza MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika MeSH