- Keywords
- C19MC,
- MeSH
- Biomarkers blood MeSH
- Risk Assessment statistics & numerical data MeSH
- Hypertension, Pregnancy-Induced * diagnosis physiopathology MeSH
- Humans MeSH
- Chromosomes, Human, Pair 16 MeSH
- MicroRNAs * blood MeSH
- Pregnancy Trimester, First blood MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Meeting Abstract MeSH
- Research Support, Non-U.S. Gov't MeSH
The objective of the study was to identify the profile of circulating C19MC microRNAs (miR-516-5p, miR-517*, miR-518b, miR-520a*, miR-520h, miR-525, and miR-526a) in patients with established preeclampsia (n = 63), fetal growth restriction (n = 27), and gestational hypertension (n = 23). We examined the correlation between plasmatic concentrations and expression levels of microRNAs and the severity of the disease with respect to clinical signs, requirements for the delivery, and Doppler ultrasound parameters. Using absolute and relative quantification approaches, increased extracellular C19MC microRNA levels (miR-516-5p, P = 0.037, P = 0.009; miR-517*, P = 0.033, P = 0.043; miR-520a*, P = 0.001, P = 0.009; miR-525, P = 0.026, P = 0.01; miR-526a, P = 0.03, P = 0.035) were detected in patients with preeclampsia. The association analysis pointed to no relationship between C19MC microRNA plasmatic concentrations and expression profile and identified risk factors for a poorer perinatal outcome. However, the dependence between the levels of plasmatic C19MC microRNAs and the pulsatility index in the middle cerebral artery and the values of cerebroplacental ratio was demonstrated. The study brought the interesting finding that the upregulation of miR-516-5p, miR-517*, miR-520a*, miR-525, and miR-526a is a characteristic phenomenon of established preeclampsia.
- MeSH
- Hypertension, Pregnancy-Induced genetics MeSH
- Humans MeSH
- MicroRNAs blood MeSH
- Pre-Eclampsia genetics MeSH
- Gene Expression Regulation MeSH
- Fetal Growth Retardation genetics MeSH
- Severity of Illness Index MeSH
- Pregnancy blood MeSH
- Ultrasonography, Doppler MeSH
- Check Tag
- Humans MeSH
- Pregnancy blood MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
To demonstrate that pregnancy-related complications are associated with alterations in placental microRNA expression. Gene expression of 15 C19MC microRNAs (miR-512-5p, miR-515-5p, miR-516-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-524-5p, miR-525, miR-526a, and miR-526b) was assessed in placental tissues, compared between groups (21 gestational hypertension [GH], 63 preeclampsia, 36 fetal growth restriction [FGR], and 42 normal pregnancies), and correlated with the severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound parameters. The expression profile of microRNAs was different between pregnancy-related complications and controls. The downregulation of 4 of 15 (miR-517-5p, miR-519d, miR-520a-5p, and miR-525), 6 of 15 (miR-517-5p, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, and miR-525), and 11 of 15 (miR-515-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, miR-520h, miR-524-5p, miR-525, and miR-526a) microRNAs was associated with GH, FGR, and preeclampsia, respectively. Sudden onset of severe preeclampsia requiring immediate termination of gestation and mild forms of preeclampsia (persisting for several weeks) were associated with similar microRNA expression profile (downregulation of miR-517-5p, miR-520a-5p, miR-524-5p, and miR-525). In addition, miR-519a was found to be associated with severe preeclampsia. The longer the pregnancy-related disorder lasted, the more extensive was the downregulation of microRNAs (miR-515-5p, miR-518b, miR-518f-5p, miR-519d, and miR-520h). The downregulation of some C19MC microRNAs is a common phenomenon shared between GH, preeclampsia, and FGR. On the other hand, some of the C19MC microRNAs are only downregulated just in preeclampsia.
- MeSH
- Biomarkers metabolism MeSH
- Adult MeSH
- Hypertension, Pregnancy-Induced metabolism MeSH
- Humans MeSH
- Chromosomes, Human, Pair 19 genetics MeSH
- MicroRNAs genetics metabolism MeSH
- Young Adult MeSH
- Multigene Family MeSH
- Placenta metabolism MeSH
- Pre-Eclampsia metabolism MeSH
- Retrospective Studies MeSH
- Fetal Growth Retardation metabolism MeSH
- Pregnancy MeSH
- Transcriptome MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
OBJECTIVE: The objective of the study was to evaluate risk assessment for gestational hypertension based on the profile of circulating placental specific C19MC microRNAs in early pregnancy. STUDY DESIGN: The prospective longitudinal cohort study of women enrolled at first trimester screening at 10 to 13 weeks was carried out (n = 267). Relative quantification of placental specific C19MC microRNAs (miR-516-5p, miR-517*, miR-518b, miR-520a*, miR-520h, miR-525 and miR-526a) was determined in 28 normal pregnancies and 18 pregnancies which developed gestational hypertension using real-time PCR and a comparative Ct method relative to synthetic C. elegans microRNA (cel-miR-39). RESULTS: Increased extracellular C19MC microRNA plasmatic levels (miR-516-5p, p<0.001; miR-517*, p = 0.007; miR-520h, p<0.001; miR-518b, p = 0.002) were detected in patients destined to develop gestational hypertension. MiR-520h had the best predictive performance with a PPV of 84.6% at a 7.1% false positive rate. The combination of miR-520h and miR-518b was able to predict 82.6% of women at the same false positive rate. The overall predictive capacity of single miR-518b (73.3% at 14.3% FPR), miR-516-5p (70.6% at 17.9% FPR) and miR-517* (57.9% at 28.6% FPR) biomarkers was lower. CONCLUSION: The study brought interesting finding that the up-regulation of miR-516-5p, miR-517*, miR-520h and miR-518b is associated with a risk of later development of gestational hypertension. First trimester screening of extracellular miR-520h alone or in combination with miR-518b identified a significant proportion of women with subsequent gestational hypertension.
- MeSH
- Caenorhabditis elegans MeSH
- Hypertension, Pregnancy-Induced blood genetics pathology MeSH
- Humans MeSH
- Chromosomes, Human, Pair 19 MeSH
- MicroRNAs blood genetics MeSH
- Placenta pathology MeSH
- Prospective Studies MeSH
- Pregnancy Trimester, First MeSH
- Base Sequence MeSH
- Pregnancy MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The aim of the study was to demonstrate that preterm birth (PTB) is associated with altered C19MC microRNA expression profile in placental tissues. Gene expression of 15 placental specific microRNAs (miR‑512‑5p, miR‑515‑5p, miR‑516‑5p, miR‑517‑5p, miR‑518b, miR‑518f‑5p, miR‑519a, miR‑519d, miR‑519e‑5p, miR‑520a‑5p, miR‑520h, miR‑524‑5p, miR‑525‑5p, miR‑526a and miR‑526b‑5p) was compared between groups: 34 spontaneous PTB, 108 preterm prelabor rupture of membranes (PPROM) and 20 term in labor pregnancies. Correlation between variables including relative microRNA quantification in placental tissues and the gestational age at delivery, white blood cell (WBC) count at admission and serum levels of C‑reactive protein at admission in patients with PPROM and PTB was determined. Expression profile of microRNAs was different between PPROM and term in labor pregnancies, PTB and term in labor pregnancies, and between gestational age‑matched PPROM and PTB groups. When compared with term in labor pregnancies, while C19MC microRNAs showed a downregulation in PPROM pregnancies (miR‑525‑5p), in PTB pregnancies C19MC microRNAs were upregulated (miR‑515‑5p, miR‑516‑5p, miR‑518b, miR‑518f‑5p, miR‑519a, miR‑519e‑5p, miR‑520a‑5p, miR‑520h, and miR‑526b‑5p) or showed a trend to upregulation (miR‑519d and miR‑526a). In comparison to PTB pregnancies, the PPROM group demonstrated a significant portion of downregulated C19MC microRNAs (miR‑516‑5p, miR‑517‑5p, miR‑518b, miR‑518f‑5p, miR‑519a, miR‑519d, miR‑519e‑5p, miR‑520a‑5p, miR‑520h, miR‑525‑5p, miR‑526a and miR‑526b‑5p). In the group of PPROM pregnancies, a weak negative correlation between the gestational age at delivery and microRNA gene expression in placental tissue for all examined C19MC microRNAs was observed. PTB pregnancies showed a positive correlation (miR‑512‑5p, miR‑515‑5p, miR‑519e‑5p) or a trend to positive correlation (miR‑516‑5p, miR‑518b, miR‑520h) between particular C19MC microRNAs and maternal WBC count at admission. Our study demonstrates that upregulation of C19MC microRNAs is a characteristic phenomenon of PTB. PPROM pregnancies have a tendency to produce lower levels of miR‑525‑5p. All examined C19MC microRNAs displayed decreased expression with advancing gestational age in PPROM group.
- MeSH
- C-Reactive Protein metabolism MeSH
- Adult MeSH
- Down-Regulation genetics MeSH
- Gestational Age MeSH
- Humans MeSH
- MicroRNAs genetics metabolism MeSH
- Multigene Family * MeSH
- Infant, Newborn MeSH
- Placenta metabolism MeSH
- Labor, Obstetric * MeSH
- Fetal Membranes, Premature Rupture blood genetics MeSH
- Premature Birth blood genetics MeSH
- Gene Expression Profiling * MeSH
- Pregnancy MeSH
- Up-Regulation genetics MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
OBJECTIVES: A nested case control study of a longitudinal cohort comparing pregnant women enrolled at 10 to 13 gestational weeks was carried out to evaluate risk assessment for preeclampsia and IUGR based on circulating placental specific C19MC microRNAs in early pregnancy. METHODS: The expression of placental specific C19MC microRNAs (miR-516b-5p, miR-517-5p, miR-518b, miR-520a-5p, miR-520h, and miR-525-5p) was determined in plasma samples from pregnancies that subsequently developed preeclampsia (n = 21), IUGR (n = 18), and 58 normal pregnancies using real-time PCR and comparative Ct method relative to synthetic Caenorhabditis elegans microRNA (cel-miR-39). RESULTS: Circulating C19MC microRNAs were up-regulated (miR-517-5p, p = 0.005; miR-518b, p = 0.013; miR-520h, p = 0.021) or showed a trend toward up-regulation in patients destined to develop preeclampsia (miR-520a-5p, p = 0.067; miR-525-5p, p = 0.073). MiR-517-5p had the best predictive performance for preeclampsia with a sensitivity of 42.9%, a specificity of 86.2%, a PPV of 52.9% and a NPV of 80.6%. The combination of all examined circulating C19MC microRNAs had no advantage over using only the miR-517-5p biomarker to predict the occurrence of preeclampsia (a sensitivity of 20.6%, a specificity of 90.8%, a PPV of 44.8%, and a NPV of 76.0%). CONCLUSIONS: Up-regulation of miR-517-5p, miR-518b and miR-520h was associated with a risk of later development of preeclampsia. First trimester screening of extracellular miR-517-5p identified a proportion of women with subsequent preeclampsia. No circulating C19MC microRNA biomarkers were identified that could predict later occurrence of IUGR.
- MeSH
- Biomarkers blood MeSH
- Adult MeSH
- Humans MeSH
- MicroRNAs blood MeSH
- Predictive Value of Tests MeSH
- Pre-Eclampsia blood diagnosis MeSH
- Prenatal Diagnosis methods MeSH
- Pregnancy Trimester, First blood MeSH
- Fetal Growth Retardation blood diagnosis MeSH
- Gene Expression Profiling MeSH
- Case-Control Studies MeSH
- Pregnancy MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The aim of the study was to verify if quantification of placental specific C19MC microRNAs in plasma exosomes would be able to differentiate during the early stages of gestation between patients subsequently developing pregnancy-related complications and women with the normal course of gestation and if this differentiation would lead to the improvement of the diagnostical potential. The retrospective study on singleton Caucasian pregnancies was performed within 6/2011-2/2019. The case control study, nested in a cohort, involved women that later developed GH (n = 57), PE (n = 43), FGR (n = 63), and 102 controls. Maternal plasma exosome profiling was performed with the selection of C19MC microRNAs with diagnostical potential only (miR-516b-5p, miR-517-5p, miR-518b, miR-520a-5p, miR-520h, and miR-525-5p) using real-time RT-PCR. The down-regulation of miR-517-5p, miR-520a-5p, and miR-525-5p was observed in patients with later occurrence of GH and PE. Maternal plasma exosomal profiling of selected C19MC microRNAs also revealed a novel down-regulated biomarker during the first trimester of gestation (miR-520a-5p) for women destinated to develop FGR. First trimester circulating plasma exosomes possess the identical C19MC microRNA expression profile as placental tissues derived from patients with GH, PE and FGR after labor. The predictive accuracy of first trimester C19MC microRNA screening (miR-517-5p, miR-520a-5p, and miR-525-5p) for the diagnosis of GH and PE was significantly higher in the case of expression profiling of maternal plasma exosomes compared to expression profiling of the whole maternal plasma samples.
- MeSH
- Biomarkers MeSH
- Circulating MicroRNA * MeSH
- Exosomes * metabolism MeSH
- Hypertension, Pregnancy-Induced blood diagnosis MeSH
- Humans MeSH
- Pre-Eclampsia blood diagnosis MeSH
- Prognosis MeSH
- Pregnancy Trimester, First MeSH
- ROC Curve MeSH
- Fetal Growth Retardation blood diagnosis MeSH
- Pregnancy MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The aim of the study was to evaluate the effectiveness of placental-specific markers, extracellular fetal DNA (sex-determining region Y and hypermethylated RASSF1A sequences) and circulating C19MC microRNAs (miR-516-5p, miR-517-5p, miR-518b, miR-520a-5p, miR-520h, miR-525, and miR-526a) for the diagnosis and consecutive follow-up of gestational trophoblastic disease/neoplasia. Increased levels of extracellular fetal DNA and C19MC microRNAs were detected in patients with active disease when compared with the period when the patients reached remission of the disease. The positive correlation between plasma levels of hypermethylated RASSF1A sequence, C19MC microRNAs, and human chorionic gonadotropin serum levels was found. MiR-520a-5p had the best performance to detect patients with active disease (a positive predictive value of 100% at a null false positive ratio (FPR)). MiR-516-5p and miR-525 were able to diagnose 100% of women with active disease at the FPR 3.9%/7.7%. The overall predictive capacity of single miR-526a (81.8% at null FPR), miR-517-5p (90.9% at 15.4% FPR), miR-518b (100% at 38.5% FPR), and miR-520h (90.9% at 26.9% FPR) biomarkers to detect active disease cases was slightly lower. Transient increase in C19MC microRNA plasma levels after the first cycle of chemotherapy indicated the decay of placental trophoblast residual tissue. The increased levels of extracellular fetal DNA and placental-specific C19MC microRNAs are associated with gestational trophoblastic disease/neoplasia. Screening of extracellular placental-specific biomarkers may represent an additional option to identify a significant proportion of women with active disease and to monitor the therapy response. Non-invasive follow-up of the decomposing residual tissue in the form of extracellular nucleic acids of placental origin packed into apoptotic bodies derived from placental trophoblasts is available.
- MeSH
- Chorionic Gonadotropin blood MeSH
- DNA blood MeSH
- Adult MeSH
- Gestational Trophoblastic Disease blood diagnosis genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Methylation * MeSH
- MicroRNAs blood MeSH
- Adolescent MeSH
- Tumor Suppressor Proteins genetics MeSH
- Follow-Up Studies MeSH
- Sex-Determining Region Y Protein genetics MeSH
- Pregnancy MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Studies of human embryonic stem cells (hESCs) commonly describe the nonfunctional p53-p21 axis of the G1/S checkpoint pathway with subsequent relevance for cell cycle regulation and the DNA damage response (DDR). Importantly, p21 mRNA is clearly present and upregulated after the DDR in hESCs, but p21 protein is not detectable. In this article, we provide evidence that expression of p21 protein is directly regulated by the microRNA (miRNA) pathway under standard culture conditions and after DNA damage. The DDR in hESCs leads to upregulation of tens of miRNAs, including hESC-specific miRNAs such as those of the miR-302 family, miR-371-372 family, or C19MC miRNA cluster. Most importantly, we show that the hESC-enriched miRNA family miR-302 (miR-302a, miR-302b, miR-302c, and miR-302d) directly contributes to regulation of p21 expression in hESCs and, thus, demonstrate a novel function for miR-302s in hESCS. The described mechanism elucidates the role of miRNAs in regulation of important molecular pathway governing the G1/S transition checkpoint before as well as after DNA damage.
- MeSH
- Cell Differentiation genetics physiology MeSH
- Cell Line MeSH
- Embryonic Stem Cells metabolism MeSH
- Cyclin-Dependent Kinase Inhibitor p21 genetics metabolism MeSH
- In Situ Nick-End Labeling MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Humans MeSH
- MicroRNAs genetics MeSH
- Tumor Suppressor Protein p53 genetics metabolism MeSH
- DNA Damage genetics MeSH
- Blotting, Western MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Úvod: Najnovšie poznatky dokázali histopatologickú, genetickú, aj klinickú uniformitu v prípade tumorov označovaných ako embryonálne tumory s mnohovrstvovými rozetami, kam patrí meduloepitelióm, ependymoblastóm a embryonálny tumor s abundatným neuropilom a pravými rozetami. Spoločným znakom je pozitivita LIN28A a amplifikácia lokusu 19q13.42, ktorý zahrňuje C19MC klaster obsahujúci gény pre mikroRNA. V patogenéze ochorenia hrá významnú úlohu dysregulácia epigenetických modifikátorov. Tieto tumory sú pozorované u najmenších detí (medián veku pod 3 roky), miera celkového prežívania je menej ako 5–10 %. Kazuistika: Temer trojročný chlapec s histologicky dokázaným tumorom mozgového kmeňa: meduloepiteliom WHO grade IV. Prišiel s príznakmi dyzartrie, bulbárneho syndrómu, centrálnej lézie n.V a kvadruparézy s pravostrannou prevahou. Od marca do konca mája 2014 dostal tri cykly indukčnej chemoterapie (protokol COG ACNS0334). Dosiahlo sa iba prechodné zlepšenie klinického stavu. V prestávke liečby sa objavili príznaky intrakraniálnej hypertenzie s potrebou zavedenia ventrikulo‑peritoneálnej drenáže, vznikla porucha vedomia v zmysle soporu. Z vitálnej indikácie dostal rádioterapiu. Po podaní dvoch frakcií – boost na ložisko tumoru – pacient upadol do kómy, na MRI sa demarkovala metastáza v mieche v úrovni C3. CT vyšetrením sa zistilo obojstranné ložiskové postihnutie v pľúcnom parenchýme, podľa popisu rádiológa mali charakter metastáz (histologizácia ložísk nerealizovaná). Pacient zomrel v auguste 2014, šesť mesiacov od prvých príznakov ochorenia. Záver: Referovaním tejto kazuistiky sme dokumentovali prvý na Slovensku zaznamenaný prípad tumoru zo skupiny embryonálnych tumorov s mnohovrstvovými rozetami. V súčasnosti neexistuje účinná liečba týchto tumorov. Prísľubom do budúcna je výskum molekúl zacielených na epigenetické modifikátory. Klíčové slová: meduloepitelióm – ependymoblastóm – embryonálne tumory s mnohovrstvovými rozetami – mikroRNA – 19q13.42 – C19MC – LIN28
Introduction: The most recent findings show a histopathological, genetic and clinical uniformity in cases of tumors called embryonal tumors with multilayer rosettes. This group is composed of medulloepithelioma, ependymoblastoma and embryonal tumor with abundant neuropil and true rosettes. Amplification of locus 19q13.42, which includes C19MC cluster containing genes for microRNA, and also LIN28A positivity are present in all three entities. Dysregulation of epigenetic modifiers is very important in pathogenesis of the disease. These tumors manifest in little children (median less than 3 years of age); overall survival is 5–10%. Case report: Almost three year-old boy diagnosed with brainstem tumor: meduloepithelioma, WHO grade IV confirmed by histological investigation. He presented with dysarthria, bulbar syndrome, central lesion of the facial nerve, quadriparesis with right-side dominancy. He received three induction cycles of chemotherapy from March to May 2014 (according to protocol COG ACNS0334). Only partial improvement of his clinical state was reached. Signs of an intracranial hypertension appeared resulting in VP shunt insertion; impairment of consciousness developed after the induction cycles and before any other treatment could be initiated. He underwent radiotherapy due to vital indication. After application of two fractions (boost in the center of the tumor), the patient became quickly comatose. Spinal cord metastasis was demarked by MRI scan (in the level of 3rd cervical vertebra). A bilateral infiltration in pulmonary parenchyma, according to a radiologist metastasis-wise, was detected by CT scan (histologisation of infiltration was not implemented). The patient died in August 2014 – six months after manifestation of first symptoms. Conclusion: We reported our first documented case of a patient with tumor from embryonal tumors with multilayer rosettes group in Slovakia. Nowadays, there is no effective treatment of these tumors. Research of molecules targeting to epigenetic modifiers would be one of the possible promises for future therapy. Key words: medulloepithelioma – ependymoblastoma – embryonal tumors with multilayer rosettes – microRNA – 19q13.42 – C19MC – LIN28 The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers. Submitted: 26. 5. 2015 Accepted: 24. 6. 2015
- MeSH
- Radiotherapy Dosage MeSH
- Cytostatic Agents therapeutic use MeSH
- Fatal Outcome * MeSH
- Neoplasms, Germ Cell and Embryonal * drug therapy genetics physiopathology MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Neoplasm Metastasis MeSH
- DNA Methylation genetics MeSH
- Brain Neoplasms drug therapy physiopathology MeSH
- Child, Preschool MeSH
- Signs and Symptoms MeSH
- Prognosis MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Child, Preschool MeSH
- Publication type
- Case Reports MeSH