Digweed, M*
Dotaz
Zobrazit nápovědu
BACKGROUND: Nijmegen breakage syndrome (NBS) is an autosomal-recessive chromosome instability disorder characterized by, among others, hypersensitivity to X-irradiation and an exceptionally high risk for lymphoid malignancy. The vast majority of NBS patients is homozygous for a common Slavic founder mutation, c.657del5, of the NBN gene, which is involved in the repair of DNA double-strand breaks (DSBs). The founder mutation also predisposes heterozygous carriers to cancer, apparently however, with a higher risk in the Czech Republic/Slovakia (CS) than in Poland. AIM: To examine whether the age of cancer manifestation and cancer death of NBN homozygotes is different between probands from CS and Poland. METHODS: The study is restricted to probands born until 1989, before replacement of the communist regime by a democratic system in CS and Poland, and a substantial transition of the health care systems. Moreover, all patients were recruited without knowledge of their genetic status since the NBN gene was not identified until 1998. RESULTS: Here, we show that cancer manifestation of NBN homozygotes is at a significantly earlier age in probands from CS than from Poland. This is explained by the difference in natural and medical radiation exposure, though within the permissible dosage. CONCLUSION: It is reasonable to assume that this finding also sheds light on the higher cancer risk of NBN heterozygotes in CS than in Poland. This has implications for genetic counseling and individualized medicine also of probands with other DNA repair defects.
BACKGROUND: Nibrin, as part of the NBN/MRE11/RAD50 complex, is mutated in Nijmegen breakage syndrome (NBS), which leads to impaired DNA damage response and lymphoid malignancy. RESULTS: Telomere length (TL) was markedly reduced in homozygous patients (and comparably so in all chromosomes) by ~40% (qPCR) and was slightly reduced in NBS heterozygotes older than 30 years (~25% in qPCR), in accordance with the respective cancer rates. Humanized cancer-free NBS mice had normal TL. Telomere elongation was inducible by telomerase and/or alternative telomere lengthening but was associated with abnormal expression of telomeric genes involved in aging and/or cell growth. Lymphoblastoid cells from NBS patients with long survival times (>12 years) displayed the shortest telomeres and low caspase 7 activity. CONCLUSIONS: NBS is a secondary telomeropathy. The two-edged sword of telomere attrition enhances the cancer-prone situation in NBS but can also lead to a relatively stable cellular phenotype in tumor survivors. Results suggest a modular model for progeroid syndromes with abnormal expression of telomeric genes as a molecular basis. METHODS: We studied TL and function in 38 homozygous individuals, 27 heterozygotes, one homozygous fetus, six NBS lymphoblastoid cell lines, and humanized NBS mice, all with the same founder NBN mutation: c.657_661del5.
- MeSH
- dítě MeSH
- heterozygot MeSH
- homeostáza telomer genetika MeSH
- homozygot MeSH
- jaderné proteiny genetika MeSH
- karyotypizace MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- modely nemocí na zvířatech MeSH
- myši transgenní MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- předškolní dítě MeSH
- progerie genetika patologie MeSH
- proteiny buněčného cyklu genetika MeSH
- syndrom Nijmegen breakage komplikace genetika patologie MeSH
- telomerasa metabolismus MeSH
- telomery patologie MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The vast majority of patients with Nijmegen Breakage Syndrome (NBS) are of Slavic origin and carry a deleterious deletion (c.657del5; rs587776650) in the NBN gene on chromosome 8q21. This mutation is essentially confined to Slavic populations and may thus be considered a Slavic founder mutation. Notably, not a single parenthood of a homozygous c.657del5 carrier has been reported to date, while heterozygous carriers do reproduce but have an increased cancer risk. These observations seem to conflict with the considerable carrier frequency of c.657del5 of 0.5% to 1% as observed in different Slavic populations because deleterious mutations would be eliminated quite rapidly by purifying selection. Therefore, we propose that heterozygous c.657del5 carriers have increased reproductive success, i.e., that the mutation confers heterozygote advantage. In fact, in our cohort study of the reproductive history of 24 NBS pedigrees from the Czech Republic, we observed that female carriers gave birth to more children on average than female non-carriers, while no such reproductive differences were observed for males. We also estimate that c.657del5 likely occurred less than 300 generations ago, thus supporting the view that the original mutation predated the historic split and subsequent spread of the 'Slavic people'. We surmise that the higher fertility of female c.657del5 carriers reflects a lower miscarriage rate in these women, thereby reflecting the role of the NBN gene product, nibrin, in the repair of DNA double strand breaks and their processing in immune gene rearrangements, telomere maintenance, and meiotic recombination, akin to the previously described role of the DNA repair genes BRCA1 and BRCA2.
- MeSH
- detekce genetických nosičů MeSH
- dospělí MeSH
- efekt zakladatele * MeSH
- haplotypy MeSH
- jaderné proteiny genetika MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace * MeSH
- oprava DNA MeSH
- poškození DNA MeSH
- proteiny buněčného cyklu genetika MeSH
- rozmnožování genetika MeSH
- syndrom Nijmegen breakage etnologie genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Slovenská republika MeSH
BACKGROUND: The autosomal recessive chromosomal instability disorder Nijmegen breakage syndrome (NBS) is associated with increased risk of lymphoid malignancies and other cancers. Cells from NBS patients contain many double-stranded DNA breaks. More than 90% of NBS patients are homozygous for a founder mutation, 657del5, in the NBN gene. We investigated the 657del5 carrier status of cancer patients among blood relatives (i.e., first-, through fourth-degree relatives) of NBS patients in the Czech Republic and Slovakia to test the hypothesis that NBN heterozygotes have an increased cancer risk. METHODS: Medical information was compiled from 344 blood relatives of NBS patients in 24 different NBS families from January 1, 1998, through December 31, 2003. The 657del5 carrier status of subjects was unknown at the time of their recruitment but was later determined from blood samples collected at the time of the interview. Medical records and death certificates were used to confirm a diagnosis of cancer. For the relatives with cancer who are not obligate heterozygotes (such as parents and two grandparents in consanguineous families), the observed and expected number of mutation carriers were compared by use of the index-test method, which estimated the risk of cancer associated with carrying the mutation. All P values were two-sided. RESULTS: Thirteen of the 344 blood relatives had confirmed cases of any type of cancer; 11 of these 13 cancer patients carried the NBN 657del5 mutation, compared with 6.0 expected (P = .005). Among the 56 grandparents with complete data from 14 NBS families, 10 of the 28 carriers of 657del5, but only one of the 28 noncarriers, developed cancer (odds ratio = 10.7, 95% CI = 1.4 to 81.5; P<.004). CONCLUSIONS: The NBN 657del5 mutation appears to be associated with an elevated risk of cancer in heterozygotes.
- MeSH
- delece genu MeSH
- detekce genetických nosičů MeSH
- dospělí MeSH
- efekt zakladatele MeSH
- financování organizované MeSH
- genetická predispozice k nemoci MeSH
- heterozygot MeSH
- kolorektální nádory epidemiologie genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutační analýza DNA MeSH
- nádory prsu epidemiologie genetika MeSH
- nádory ženských pohlavních orgánů epidemiologie genetika MeSH
- odds ratio MeSH
- proteiny buněčného cyklu genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- zárodečné mutace MeSH
- zlomy chromozomů MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: Nijmegen breakage syndrome (NBS) is an autosomal recessive chromosomal instability disorder with hypersensitivity to ionising radiation. The clinical phenotype is characterised by congenital microcephaly, mild dysmorphic facial appearance, growth retardation, immunodeficiency, and greatly increased risk for lymphoreticular malignancy. Most NBS patients are of Slavic origin and homozygous for the founder mutation 657del5. The frequency of 657del5 heterozygotes in the Czech population is 1:150. Recently, another NBS1 mutation, 643C>T(R215W), with uncertain pathogenicity was found to have higher frequency among tumour patients of Slavic origin than in controls. This alteration results in the substitution of the basic amino acid arginine with the non-polar tryptophan and thus could potentially interfere with the function of the NBS1 protein, nibrin. METHODS AND RESULTS: Children with congenital microcephaly are routinely tested for the 657del5 mutation in the Czech and Slovak Republics. Here, we describe for the first time a severe form of NBS without chromosomal instability in monozygotic twin brothers with profound congenital microcephaly and developmental delay who are compound heterozygotes for the 657del5 and 643C>T(R215W) NBS1 mutations. Both children showed reduced expression of full length nibrin when compared with a control and a heterozygote for the 657del5 mutation. Radiation response processes such as phosphorylation of ATM and phosphorylation/stabilisation of p53, which are promoted by NBS1, are strongly reduced in cells from these patients. CONCLUSIONS: Interestingly, the patients are more severely affected than classical NBS patients. Consequently, we postulate that homozygosity for the 643C>T(R215W) mutation will also lead to a, possibly very, severe disease phenotype.
- MeSH
- chromozomální nestabilita MeSH
- financování organizované MeSH
- fosforylace MeSH
- geny recesivní MeSH
- jaderné proteiny genetika metabolismus MeSH
- lidé MeSH
- mapování chromozomů MeSH
- mikrocefalie genetika MeSH
- mutace MeSH
- nemoci u dvojčat MeSH
- polymerázová řetězová reakce MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- substituce aminokyselin MeSH
- syndrom Nijmegen breakage genetika MeSH
- Check Tag
- lidé MeSH
- Geografické názvy
- Česká republika MeSH