Green pesticide Dotaz Zobrazit nápovědu
The main objective of the review is a discussion of various extraction techniques used for analysis of different types of nutraceuticals. It is shown that the most frequently used technique is the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) method; other effective techniques are accelerated solvent extraction, supercritical fluid extraction, and microwave assisted extraction. On the other hand, the application of microextraction techniques is on the rise. It can be expected that these techniques will prevail because they reduce or eliminate the volume of toxic solvents required for extraction. The use of clean up steps following the extraction is recommended to obtain satisfactory recoveries and to minimize the matrix effect. The most frequently used techniques for determination of pesticides in nutraceuticals are GC or HPLC in combination with MS or MS-MS. Analysis of real samples with a number of positive findings endorse the idea that a deeper and continuous investigation of pesticide residues in nutraceutical products is necessary in order to guarantee consumer’s safety.
- MeSH
- čaj chemie škodlivé účinky toxicita MeSH
- chemické techniky analytické * metody využití MeSH
- chromatografie kapalinová metody využití MeSH
- chromatografie plynová metody využití MeSH
- kontaminace léku MeSH
- kontaminace potravin analýza MeSH
- léčivé rostliny * chemie škodlivé účinky toxicita MeSH
- pesticidy * analýza MeSH
- potravní doplňky * analýza škodlivé účinky toxicita MeSH
- rezidua pesticidů * analýza MeSH
- Publikační typ
- práce podpořená grantem MeSH
Pesticide residues from the time of application until harvest were analysed for 20, 17 and 18 active insecticidal and fungicidal substances in Chinese cabbage, head cabbage and cauliflower, respectively. In total, 40 mathematical models of residue degradation were developed using a first-order kinetic equation, and from these models it was possible to forecast the action pre-harvest interval for a given action threshold for low-residue production in Brassica vegetables as a percentage of the maximum residue level. Additionally, it was possible to establish an action pre-harvest interval based on an action threshold of 0.01 mg kg(‒1) for the production of Brassica vegetables for baby food. Among the evaluated commodities, the speed of residue degradation was highest in head cabbage, medium in Chinese cabbage and lowest in cauliflower. The half-lives of pesticide in various vegetables were also determined: they ranged from 1.55 to 5.25 days in Chinese cabbage, from 0.47 to 6.54 days in head cabbage and from 1.88 to 7.22 days in cauliflower.
- MeSH
- Brassica chemie MeSH
- fungicidy průmyslové analýza MeSH
- kontaminace potravin analýza MeSH
- rezidua pesticidů analýza MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Čína MeSH
The content of residual organochlorine pesticides (OCPs) was examined in green, herbal, and black tea leaves as well as in their infusions prepared from tea products marketed in the main supermarkets in Poland. It was found that the detected mean levels of organochlorine residues in tea leaves ranged from
- MeSH
- analýza potravin * MeSH
- bylinné čaje analýza MeSH
- čaj chemie MeSH
- chemické látky znečišťující vodu analýza MeSH
- chlorované uhlovodíky analýza MeSH
- listy rostlin chemie MeSH
- obchod MeSH
- rezidua pesticidů analýza MeSH
- rozpustnost MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
A new method has been developed to detect 36 pesticides that may contaminate tea samples (green, black and fruit tea). The hyphenation of solid-phase microextraction in head-space mode with a comprehensive two-dimensional gas chromatography coupled with high-speed time-of-flight mass spectrometry (HS-SPME-GCxGC/TOF MS) proved to be a quick alternative to conventional GC/MS methodology which employs solvent-based extraction. The key parameters for controlling HS-SPME performance were optimized, including fiber coating type, temperature and absorption time settings and tea matrix modification by adding water. Quantification was carried out using matrix-matched calibration. The repeatability of measurements, expressed as relative standard deviation (R.S.D.), was less than 24% for all analytes. The limits of quantification ranged from 1 to 28 microgkg(-1). The optimized method was applied to analyze real life samples obtained from a retail market. Results generated by the new SPME procedure and those obtained by using a conventional one involving ethyl acetate extraction and high-performance gel permeation chromatography (HPGPC) clean up agreed with each other for positive (containing residue) samples.
The rapid spread of highly aggressive arboviruses, parasites, and bacteria along with the development of resistance in the pathogens and parasites, as well as in their arthropod vectors, represents a huge challenge in modern parasitology and tropical medicine. Eco-friendly vector control programs are crucial to fight, besides malaria, the spread of dengue, West Nile, chikungunya, and Zika virus, as well as other arboviruses such as St. Louis encephalitis and Japanese encephalitis. However, research efforts on the control of mosquito vectors are experiencing a serious lack of eco-friendly and highly effective pesticides, as well as the limited success of most biocontrol tools currently applied. Most importantly, a cooperative interface between the two disciplines is still lacking. To face this challenge, we have reviewed a wide number of promising results in the field of green-fabricated pesticides tested against mosquito vectors, outlining several examples of synergy with classic biological control tools. The non-target effects of green-fabricated nanopesticides, including acute toxicity, genotoxicity, and impact on behavioral traits of mosquito predators, have been critically discussed. In the final section, we have identified several key challenges at the interface between "green" nanotechnology and classic biological control, which deserve further research attention.
- MeSH
- dengue MeSH
- hmyz - vektory účinky léků MeSH
- infekce virem zika mikrobiologie MeSH
- lidé MeSH
- malárie MeSH
- moskyti - kontrola * metody MeSH
- One Health MeSH
- virus zika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The study presents tracking of 58 pesticide residues associated with hops to estimate their carryover into brewed beer. The pesticides were spiked onto organic hops at a concentration of 15 mg/kg, and the wort was boiled with the artificially contaminated hops and fermented on a laboratory scale. Samples were collected during the whole brewing process and pesticide residues were extracted using a method known as QuEChERS (quick, easy, cheap, effective, rugged, and safe). An HPLC-HR-MS/MS method was developed and validated to identify and quantitate pesticide residues in treated hops, spent hops, hopped wort, green beer, and beer samples. Quantitation was achieved using standard addition with isotopically labeled standards. The carryover percentages into hopped wort and the percentages of decay reduction relative to the amount spiked on hops were calculated. The relationship between the partition coefficients n-octanol-water (log P values) and the residual ratios ( RW and RB) of a pesticide were evaluated to predict their behavior during hopping of wort and fermentation. Pesticides with a high log P values (>3.75) tended to remain in spent hops. The pesticides that have a low log P value up to approximately 3 could represent the demarcation lines of appreciable transfer rate of pesticides from hops to beer. Consequently, the pesticides were divided into three categories depending upon their fate during the brewing process. The most potential risk category represents a group involving the thermostable pesticides, such as azoxystrobin, boscalid, dimethomorph, flonicamid, imidacloprid, mandipropamid, myclobutanil, and thiamethoxam, which were transferred at high rates from the pesticide enriched hops into beer during the laboratory brewing trial. These results can be used as a guideline in the application of pesticides on hop plants that would reduce the level of pesticide residues in beer and their exposure in humans.
Excessive use of pesticides could potentially harm the environment for a long time. The reason for this is that the banned pesticide is still likely to be used incorrectly. Carbofuran and other banned pesticides that remain in the environment may also have a negative effect on human beings. In order to provide a better chance for effective environmental screening, this thesis describes a prototype of a photometer tested with cholinesterase to potentially detect pesticides in the environment. The open-source portable photodetection platform uses a color-programmable red, green and blue light-emitting diode (RGB LED) as a light source and a TSL230R light frequency sensor. Acetylcholinesterase from Electrophorus electricus (AChE) with high similarity to human AChE was used for biorecognition. The Ellman method was selected as a standard method. Two analytical approaches were applied: (1) subtraction of the output values after a certain period of time and (2) comparison of the slope values of the linear trend. The optimal preincubation time for carbofuran with AChE was 7 min. The limits of detection for carbofuran were 6.3 nmol/L for the kinetic assay and 13.5 nmol/L for the endpoint assay. The paper demonstrates that the open alternative for commercial photometry is equivalent. The concept based on the OS3P/OS3P could be used as a large-scale screening system.
- MeSH
- acetylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- cholinesterasy MeSH
- karbofuran * MeSH
- lidé MeSH
- pesticidy * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Pentachlorophenol (PCP) is a persistent pollutant which has been widely used as a pesticide and a wood preservative. As PCP is toxic and is present in significant quantities in the environment, there is considerable interest in elimination of PCP from waters. One of the promising methods is the application of ferrate. Ferrate is an oxidant and coagulant. It can be applied as a multi-purpose chemical for water and wastewater treatment as it degrades a wide range of environmental pollutants. Moreover, ferrate is considered a green oxidant and disinfectant. This study focuses on the kinetics of PCP degradation by ferrate under different pH conditions. The formation of degradation products is also considered. The second-order rate constants of the PCP reaction with ferrate increased from 23 M(-1) s(-1) to 4,948 M(-1) s(-1) with a decrease in pH from 9 to 6. At neutral pH the degradation was fast, indicating that ferrate could be used for rapid removal of PCP. The total degradation of PCP was confirmed by comparing the initial PCP molarity with the molarity of chloride ions released. We conclude no harmful products are formed during ferrate treatment as all PCP chlorine was released as chloride. Specifically, no polychlorinated dibenzo-p-dioxins and dibenzofurans were detected.