Immobilization methods
Dotaz
Zobrazit nápovědu
Imobilizace enzymů a mikroorganismů se stala nedílnou součástí mnoha biotechnologických procesů. V dnešní době je pro imobilizaci k dispozici celá řada anorganických, organických i syntetických materiálů a způsobů imobilizace, pomocí kterých je možné zvýšit stabilitu biokatalyzátorů, zajistit možnost jejich opětovného použití, a tím snížit náklady výrobního procesu. Zda je pro daný proces vhodné biokatalyzátor imobilizovat či nikoliv, závisí na řadě parametrů, mimo jiné na typu biokatalyzátoru, jeho vlastnostech a na aplikaci výsledného produktu.
Immobilization of enzymes and microorganisms has become an important part of many biotechnological processes. Different types of inorganic, organic, and synthetic materials and immobilization methods are used for increasing the biocatalyst stability, reusability and reduction of operating costs. Suitability of biocatalyst immobilization in the process depends on many parameters, such as biocatalyst properties, type of product and its application.
- MeSH
- biokatalýza * MeSH
- biotechnologie metody MeSH
- enzymy * MeSH
- imobilizace MeSH
- Publikační typ
- práce podpořená grantem MeSH
Biocatalyst immobilization is one of the techniques, which can improve whole cells or enzyme applications. This method, based on the fixation of the biocatalyst into or onto various materials, may increase robustness of the biocatalyst, allows its reuse, or improves the product yield. In recent decades, a number of immobilization techniques have been developed. They can be divided according to the used natural or synthetic material and principle of biocatalyst fixation in the particle. One option, based on the entrapment of cells or enzymes into a synthetic polyvinyl alcohol lens with original shape, is LentiKats® immobilization. This review describes the preparation principle of these particles and summarizes existing successful LentiKats® immobilizations. In addition, examples are compared with other immobilization techniques or free biocatalysts, pointing to the advantages and disadvantages of LentiKats®.
Nejčastěji se používají kuraremimetika intravenózně. Jihoameričtí indiáni však používali kurare intramuskulárně a také první badatelé (Schomburgk, Humboldt) studovali účinky kurare podaného touto cestou. Ještě v 19. století a v první polovině 20. století bylo podáváno kurare intramuskulárně k léčení tetanu i k navození relaxace v průběhu operačních výkonů. Suxametonium bylo použito od začátku 50. let 20. století k imobilizaci velkých druhů zvířat. Po několika minutách od aplikace došlo k imobilizaci při plném vědomí zvířete. V současné době jsou používána kurarimimetika intramuskulárně v akutních situacích, zejména v pediatrii. Jsou testovány i další netradiční způsoby aplikace, např. tracheální, intraoseální.
Nowadays curare-related drugs are usually administered intravenously. South-American Indians used to use curare intramuscularly and indeed the early researchers studied this route of administration. As late as in the 19th and in the first half of the 20th century curare was given intramuscularly for the treatment of tetanus and for muscle relaxation during surgery. Suxamethonium was used in the 1950s for immobilisation of large animals. Several minutes after administration, immobilisation was achieved with the consciousness of the animal preserved. Nowadays the intramuscular administration of neuromuscular blocking drugs is reserved for emergency situations, mostly in paediatrics. More alternative methods (such as intratracheal and intraosseous) are being studied.
- Klíčová slova
- Suxametonium,
- MeSH
- centrálně působící myorelaxancia aplikace a dávkování farmakologie MeSH
- finanční podpora výzkumu jako téma MeSH
- imobilizace MeSH
- injekce intramuskulární MeSH
- kurare aplikace a dávkování dějiny terapeutické užití MeSH
- lidé MeSH
- pankuronium aplikace a dávkování toxicita MeSH
- rokuronium MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
Ligninolytic enzymes from white-rot fungi are widely used in biotechnological processes. However, the application of these enzymes as free enzymes is limited due to their instability and lack of reusability. Enzyme stabilization is therefore a major challenge in biocatalytic process research, and immobilization methods are desirable. Using cross-linked enzyme aggregates (CLEAs) such as magnetic CLEAs, porous-CLEAs and combi-CLEAs is a promising technique for overcoming these issues. Cross-linking methods can stabilize and immobilize enzymes by interconnecting enzyme molecules via multiple bonds using cross-linking agents such as glutaraldehyde. The high catalyst density and microporous assembly of CLEAs guarantee high catalyst activity, which, together with their long shelf life, operational stability, and reusability, provide a cost-efficient alternative to matrix-assisted immobilization approaches. Here, we review current progress in ligninolytic enzyme immobilization and provide a comprehensive review of CLEAs. Moreover, we summarize the use of these CLEAs for biocatalysis processes, bioremediation such as dye decolourization, wastewater treatment or pharmaceutically active compound elimination.
The enzyme immobilization is a very important process providing an attachment of the enzyme to a certain type of the carrier. This allows to maintain the enzyme activity during the storage and it also simplifies the detection procedure. When designing a new detector based on the enzymatic reaction, the proper immobilization method must be chosen depending on the advantages and disadvantages of the available methods of immobilization. Examples of immobilization method for colorimetric detection include, e.g., adsorption to the insoluble carrier, covalent bonding, attachment to ion exchangers, incorporation into gels and foams, immobilization in the form of cross-linked aggregates or nanostructures or with the utilization of antibodies.
- Klíčová slova
- kovalentní vazba,
- MeSH
- adsorpce MeSH
- cholinesterasové inhibitory MeSH
- cholinesterasy MeSH
- enzymy * MeSH
- gely analýza chemie MeSH
- imobilizace * metody přístrojové vybavení MeSH
- Publikační typ
- práce podpořená grantem MeSH
Mikrobiální enzymy jsou používány v širokém spektru průmyslové výroby, ve farmacii, v medicíně, nebo jako součást detekčních metod či biosenzorů, díky nízkým nákladům na produkci za krátkou časovou jednotku. Imobilizace enzymů na pevné povrchy se ukázala jako metoda zlepšující potřebné nároky, jako jsou vyšší efektivita enzymatické reakce v čase, lepší pH a tepelná stabilita, možnost opakovaného použití, snadná separace enzymu a dlouhodobá stabilita. V průmyslu se imobilizace využívá v mnoha procesech výroby potravin, v detergentech a při jejich přípravě, v textilním průmyslu nebo při produkci bio paliv. Ve farmacii jsou imobilizované enzymy součástí výroby léčiv, či jako složka léčiv samotných, v medicíně se imobilizace enzymů využívá k léčbě a diagnostice chorob. Imobilizované enzymy se ukázaly jako vhodná součást detekčních metod, jsou součástí biosenzorů pro stanovení specifických markerů otrav a nemocí nebo se využívají jako detekční zařízení pro stanovení znečistění vod, půd či jako ekologická varianta nahrazující toxické chemikálie. Imobilizace enzymů na pevné povrchy se prosazuje v mnoha oborech a do budoucna v sobě skýtá velký potenciál.
Microbial enzymes are used in a wide range of industrial production, in pharmacy, medicine or as part of detection methods or biosensors, due to low-cost production in short time. Immobilization of enzymes on solid surfaces has been shown to improve essential requirements, such as higher efficiency of the enzymatic reaction per unit time, better pH and thermo stability, repeated use, easy separation of enzyme and long-term stability. In industry, immobilization is used in food production processes, in detergents and their preparation, in the textile industry or in the production of biofuels. In pharmacy, immobilized enzymes are a part of the production of drugs, or as a part of drugs themselves, in medicine, immobilized enzymes are used to treat or diagnosis of diseases. Immobilized enzymes are a suitable part of detection methods, segment of biosensors for the determination of specific markers of poisoning and diseases, also are used for the determination of water and soil pollution or as an ecological variant replacing toxic chemicals. Immobilization of enzymes on solid surfaces is used in many areas and offers great potential for the future.
... -- Tissue Culture Study of Auto-immune Phenomena 239 -- By R.J.V.Pulvertaft -- Discussion -- Immobilization ...
First published xvi, 628 stran, 32 nečíslovaných stran : ilustrace, tabulky ; 23 cm
- MeSH
- imunologické testy metody MeSH
- nemoci imunitního systému diagnóza MeSH
- Publikační typ
- kongresy MeSH
- sborníky MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- alergologie a imunologie
OBJECTIVES: The aim of this study was to develop functionalized nanofibres as a simple delivery system for growth factors (GFs) and make nanofibre cell-seeded scaffold implants a one-step intervention. MATERIALS AND METHODS: We have functionalized polycaprolactone (PCL) nanofibres with thrombocytes adherent on them. Immobilized, these thrombocytes attached to nanofibre scaffolds were used as a nanoscale delivery system for native (autologous) proliferation and differentiation factors, in vitro. Pig chondrocytes were seeded on the thrombocyte-coated scaffolds and levels of proliferation and differentiation of these cells were compared with those seeded on non-coated scaffolds. RESULTS: Immobilized thrombocytes on PCL nanofibres effectively enhanced chondrocyte proliferation due to time-dependent degradation of thrombocytes and release of their GFs. CONCLUSIONS: These simply functionalized scaffolds present new possibilities for nanofibre applications, as smart cell scaffolds equipped with a GF delivery tool.
- MeSH
- buněčná diferenciace MeSH
- chondrocyty cytologie MeSH
- imobilizované buňky metabolismus MeSH
- kultivované buňky MeSH
- mezibuněčné signální peptidy a proteiny aplikace a dávkování MeSH
- nanovlákna chemie MeSH
- nosiče léků chemie MeSH
- polyestery chemie MeSH
- prasata MeSH
- proliferace buněk MeSH
- trombocyty cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH