Targeting ubiquitin E3 ligases is therapeutically attractive; however, the absence of an active-site pocket impedes computational approaches for identifying inhibitors. In a large, unbiased biochemical screen, we discover inhibitors that bind a cryptic cavity distant from the catalytic cysteine of the homologous to E6-associated protein C terminus domain (HECT) E3 ligase, SMAD ubiquitin regulatory factor 1 (SMURF1). Structural and biochemical analyses and engineered escape mutants revealed that these inhibitors restrict an essential catalytic motion by extending an α helix over a conserved glycine hinge. SMURF1 levels are increased in pulmonary arterial hypertension (PAH), a disease caused by mutation of bone morphogenetic protein receptor-2 (BMPR2). We demonstrated that SMURF1 inhibition prevented BMPR2 ubiquitylation, normalized bone morphogenetic protein (BMP) signaling, restored pulmonary vascular cell homeostasis, and reversed pathology in established experimental PAH. Leveraging this deep mechanistic understanding, we undertook an in silico machine-learning-based screen to identify inhibitors of the prototypic HECT E6AP and confirmed glycine-hinge-dependent allosteric activity in vitro. Inhibiting HECTs and other glycine-hinge proteins opens a new druggable space.
- MeSH
- Allosteric Regulation drug effects MeSH
- Humans MeSH
- Mice MeSH
- Pulmonary Arterial Hypertension drug therapy MeSH
- Bone Morphogenetic Protein Receptors, Type II MeSH
- Signal Transduction drug effects MeSH
- Ubiquitination drug effects MeSH
- Ubiquitin-Protein Ligases * antagonists & inhibitors metabolism chemistry genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
PDGFRA is crucial to tumorigenesis and frequently genomically altered in high-grade glioma (HGG). In a comprehensive dataset of pediatric HGG (n = 261), we detect PDGFRA mutations and/or amplifications in 15% of cases, suggesting PDGFRA as a therapeutic target. We reveal that the PDGFRA/KIT inhibitor avapritinib shows (1) selectivity for PDGFRA inhibition, (2) distinct patterns of subcellular effects, (3) in vitro and in vivo activity in patient-derived HGG models, and (4) effective blood-brain barrier penetration in mice and humans. Furthermore, we report preliminary clinical real-world experience using avapritinib in pediatric and young adult patients with predominantly recurrent/refractory PDGFRA-altered HGG (n = 8). Our early data demonstrate that avapritinib is well tolerated and results in radiographic response in 3/7 cases, suggesting a potential role for avapritinib in the treatment of HGG with specific PDGFRA alterations. Overall, these translational results underscore the therapeutic potential of PDGFRA inhibition with avapritinib in HGG.
- MeSH
- Child MeSH
- Adult MeSH
- Glioma * drug therapy genetics pathology MeSH
- Blood-Brain Barrier metabolism MeSH
- Protein Kinase Inhibitors * pharmacology therapeutic use MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Mutation MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Brain Neoplasms * drug therapy genetics pathology MeSH
- Child, Preschool MeSH
- Antineoplastic Agents * pharmacology therapeutic use MeSH
- Pyrazoles * pharmacology therapeutic use MeSH
- Pyrroles MeSH
- Receptor, Platelet-Derived Growth Factor alpha * genetics antagonists & inhibitors metabolism MeSH
- Neoplasm Grading MeSH
- Triazines MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Mice MeSH
- Child, Preschool MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Hypertrophic cardiomyopathy (HCM) caused by autosomal-dominant mutations in genes coding for structural sarcomeric proteins, is the most common inherited heart disease. HCM is associated with myocardial hypertrophy, fibrosis and ventricular dysfunction. Hypoxia-inducible transcription factor-1α (Hif-1α) is the central master regulators of cellular hypoxia response and associated with HCM. Yet its exact role remains to be elucidated. Therefore, the effect of a cardiomyocyte-specific Hif-1a knockout (cHif1aKO) was studied in an established α-MHC719/+ HCM mouse model that exhibits the classical features of human HCM. The results show that Hif-1α protein and HIF targets were upregulated in left ventricular tissue of α-MHC719/+ mice. Cardiomyocyte-specific abolishment of Hif-1a blunted the disease phenotype, as evidenced by decreased left ventricular wall thickness, reduced myocardial fibrosis, disordered SRX/DRX state and ROS production. cHif1aKO induced normalization of pro-hypertrophic and pro-fibrotic left ventricular remodeling signaling evidenced on whole transcriptome and proteomics analysis in α-MHC719/+ mice. Proteomics of serum samples from patients with early onset HCM revealed significant modulation of HIF. These results demonstrate that HIF signaling is involved in mouse and human HCM pathogenesis. Cardiomyocyte-specific knockout of Hif-1a attenuates disease phenotype in the mouse model. Targeting Hif-1α might serve as a therapeutic option to mitigate HCM disease progression.
- MeSH
- Hypoxia-Inducible Factor 1, alpha Subunit * metabolism genetics MeSH
- Fibrosis MeSH
- Cardiomyopathy, Hypertrophic * metabolism genetics pathology MeSH
- Myocytes, Cardiac * metabolism pathology MeSH
- Humans MeSH
- Disease Models, Animal * MeSH
- Mice, Knockout * MeSH
- Mice MeSH
- Sarcomeres * metabolism MeSH
- Signal Transduction MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The trafficking dynamics of uromodulin (UMOD), the most abundant protein in human urine, play a critical role in the pathogenesis of kidney disease. Monoallelic mutations in the UMOD gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD-UMOD), an incurable genetic disorder that leads to kidney failure. The disease is caused by the intracellular entrapment of mutant UMOD in kidney epithelial cells, but the precise mechanisms mediating disrupted UMOD trafficking remain elusive. Here, we report that transmembrane Emp24 protein transport domain-containing (TMED) cargo receptors TMED2, TMED9, and TMED10 bind UMOD and regulate its trafficking along the secretory pathway. Pharmacological targeting of TMEDs in cells, in human kidney organoids derived from patients with ADTKD-UMOD, and in mutant-UMOD-knockin mice reduced intracellular accumulation of mutant UMOD and restored trafficking and localization of UMOD to the apical plasma membrane. In vivo, the TMED-targeted small molecule also mitigated ER stress and markers of kidney damage and fibrosis. Our work reveals TMED-targeting small molecules as a promising therapeutic strategy for kidney proteinopathies.
- MeSH
- Humans MeSH
- Membrane Glycoproteins metabolism genetics MeSH
- Mutation MeSH
- Mice MeSH
- Protein Transport * MeSH
- Uromodulin * metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
PURPOSE: Pediatric sarcomas are bone and soft tissue tumors that often exhibit high metastatic potential and refractory stem-like phenotypes, resulting in poor outcomes. Aggressive sarcomas frequently harbor a disrupted p53 pathway. However, whether pediatric sarcoma stemness is associated with abrogated p53 function and might be attenuated via p53 reactivation remains unclear. METHODS: We utilized a unique panel of pediatric sarcoma models and tumor tissue cohorts to investigate the correlation between the expression of stemness-related transcription factors, p53 pathway dysregulations, tumorigenicity in vivo, and clinicopathological features. TP53 mutation status was assessed by next-generation sequencing. Major findings were validated via shRNA-mediated silencing and functional assays. The p53 pathway-targeting drugs were used to explore the effects and selectivity of p53 reactivation against sarcoma cells with stem-like traits. RESULTS: We found that highly tumorigenic stem-like sarcoma cells exhibit dysregulated p53, making them vulnerable to drugs that restore wild-type p53 activity. Immunohistochemistry of mouse xenografts and human tumor tissues revealed that p53 dysregulations, together with enhanced expression of the stemness-related transcription factors SOX2 or KLF4, are crucial features in pediatric osteosarcoma, rhabdomyosarcoma, and Ewing's sarcoma development. p53 dysregulation appears to be an important step for sarcoma cells to acquire a fully stem-like phenotype, and p53-positive pediatric sarcomas exhibit a high frequency of early metastasis. Importantly, reactivating p53 signaling via MDM2/MDMX inhibition selectively induces apoptosis in aggressive, stem-like Ewing's sarcoma cells while sparing healthy fibroblasts. CONCLUSIONS: Our results indicate that restoring canonical p53 activity provides a promising strategy for developing improved therapies for pediatric sarcomas with unfavorable stem-like traits.
- MeSH
- Child MeSH
- Kruppel-Like Factor 4 * MeSH
- Humans MeSH
- Adolescent MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Neoplastic Stem Cells * metabolism pathology MeSH
- Tumor Suppressor Protein p53 * metabolism genetics MeSH
- Child, Preschool MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Sarcoma * genetics pathology metabolism MeSH
- Signal Transduction MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Mice MeSH
- Child, Preschool MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Radiation-induced intestinal injury (RIII) interrupts the scheduled processes of abdominal and pelvic radiotherapy (RT) and compromises the quality of life of cancer survivors. However, the specific regulators and mechanisms underlying the effects of RIII remain unknown. The biological effects of RT are caused primarily by DNA damage, and ataxia telangiectasia mutated (ATM) is a core protein of the DNA damage response (DDR). However, whether ATM is regulated by deubiquitination signaling remains unclear. METHODS: We established animal and cellular models of RIII. The effects of ubiquitin-specific protease 15 (USP15) on DNA damage and radion-induced intestinal injury were evaluated. Mass spectrometry analysis, truncation tests, and immunoprecipitation were used to identify USP15 as a binding partner of ATM and to investigate the ubiquitination of ATM. Finally, the relationship between the USP15/ATM axes was further determined via subsequent experiments. RESULTS: In this study, we identified the deubiquitylating enzyme USP15 as a regulator of DNA damage and the pathological progression of RIII. Irradiation upregulates the expression of USP15, whereas pharmacological inhibition of USP15 exacerbates radiation-induced DNA damage and RIII both in vivo and in vitro. Mechanistically, USP15 interacts with, deubiquitinates, and stabilises ATM via K48-linked deubiquitination. Notably, ATM overexpression blocks the effect of USP15 genetic inhibition on DNA damage and RIII progression. CONCLUSIONS: These findings describe ATM as a novel deubiquitination target of USP15 upon radiation-induced DNA damage and intestinal injury, and provides experimental support for USP15/ATM axis as a potential target for developing strategies that mitigate RIII.
- MeSH
- Ataxia Telangiectasia Mutated Proteins * metabolism genetics MeSH
- Humans MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- DNA Damage * MeSH
- Radiation Injuries metabolism genetics MeSH
- Ubiquitin-Specific Proteases * metabolism genetics MeSH
- Intestines radiation effects pathology MeSH
- Ubiquitination * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Anaplastic Large Cell Lymphoma (ALCL) is a rare and aggressive T-cell lymphoma, classified into ALK-positive and ALK-negative subtypes, based on the presence of chromosomal translocations involving the ALK gene. The current standard of treatment for ALCL is polychemotherapy, with a high overall survival rate. However, a subset of patients does not respond to or develops resistance to these therapies, posing a serious challenge for clinicians. Recent targeted treatments such as ALK kinase inhibitors and anti-CD30 antibody-drug conjugates have shown promise but, for a fraction of patients, the prognosis is still unsatisfactory. METHODS: We investigated the genetic landscape of ALK + ALCL by whole-exome sequencing; recurring mutations were characterized in vitro and in vivo using transduced ALCL cellular models. RESULTS: Recurrent mutations in FAT family genes and the transcription factor RUNX1T1 were found. These mutations induced changes in ALCL cells morphology, growth, and migration, shedding light on potential factors contributing to treatment resistance. In particular, FAT4 silencing in ALCL cells activated the β-catenin and YAP1 pathways, which play crucial roles in tumor growth, and conferred resistance to chemotherapy. Furthermore, STAT1 and STAT3 were hyper-activated in these cells. Gene expression profiling showed global changes in pathways related to cell adhesion, cytoskeletal organization, and oncogenic signaling. Notably, FAT mutations associated with poor outcome in patients. CONCLUSIONS: These findings provide novel insights into the molecular portrait of ALCL, that could help improve treatment strategies and the prognosis for ALCL patients.
- MeSH
- Lymphoma, Large-Cell, Anaplastic * genetics pathology drug therapy MeSH
- Phenotype MeSH
- Cadherins * genetics MeSH
- Humans MeSH
- Mutation * MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Prognosis MeSH
- Exome Sequencing MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The therapeutic potential of targeting PI3K/AKT/PTEN signalling in B-cell malignancies remains attractive. Whilst PI3K-α/δ inhibitors demonstrate clinical benefit in certain B-cell lymphomas, PI3K signalling inhibitors have been inadequate in relapsed/refractory diffuse large B-cell lymphoma (DLBCL) in part, due to treatment related toxicities. Clinically, AKT inhibitors exhibit a differentiated tolerability profile offering an alternative approach for treating patients with B-cell malignancies. To explore how AKT inhibition complements other potential therapeutics in the treatment of DLBCL patients, an in vitro combination screen was conducted across a panel of DLCBL cell lines. The AKT inhibitor, capivasertib, in combination with the BCL-2 inhibitor, venetoclax, produced notable therapeutic benefit in preclinical models of DLBCL. Capivasertib and venetoclax rapidly induced caspase and PARP cleavage in GCB-DLBCL PTEN wildtype cell lines and those harbouring PTEN mutations or reduced PTEN protein, driving prolonged tumour growth inhibition in DLBCL cell line and patient derived xenograft lymphoma models. The addition of the rituximab further deepened the durability of capivasertib and venetoclax responses in a RCHOP refractory DLBCL in vivo models. These findings provide preclinical evidence for the rational treatment combination of AKT and BCL-2 inhibitors using capivasertib and venetoclax respectively alongside anti-CD20 antibody supplementation for treatment of patients with DLBCL.
- MeSH
- Apoptosis drug effects MeSH
- Bridged Bicyclo Compounds, Heterocyclic * pharmacology therapeutic use MeSH
- Lymphoma, Large B-Cell, Diffuse * drug therapy pathology MeSH
- PTEN Phosphohydrolase metabolism MeSH
- Humans MeSH
- Mice, SCID MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Combined Chemotherapy Protocols * pharmacology therapeutic use MeSH
- Proto-Oncogene Proteins c-akt * metabolism MeSH
- Proto-Oncogene Proteins c-bcl-2 * antagonists & inhibitors metabolism MeSH
- Pyrimidines * pharmacology therapeutic use MeSH
- Pyrroles pharmacology therapeutic use MeSH
- Rituximab pharmacology therapeutic use MeSH
- Sulfonamides * pharmacology therapeutic use MeSH
- Xenograft Model Antitumor Assays * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Pleckstrin homology-like domain family A-member 3 (PHLDA3) has recently been identified as a player in adaptive and maladaptive cellular stress pathways. The outcome of pleckstrin homology-like domain family A-member 3 signalling was shown to vary across different cell types and states. It emerges that its expression and protein level are highly increased in amyotrophic lateral sclerosis (ALS) patient-derived astrocytes. Whether it orchestrates a supportive or detrimental function remains unexplored in the context of neurodegenerative pathologies. To directly address the role of pleckstrin homology-like domain family A-member 3 in healthy and ALS astrocytes, we used overexpression and knockdown strategies. We generated cultures of primary mouse astrocytes and also human astrocytes from control and ALS patient-derived induced pluripotent stem cells harbouring the superoxide dismutase 1 mutation. Then, we assessed astrocyte viability and the impact of their secretome on oxidative stress responses in human stem cell-derived cortical and spinal neuronal cultures. Here, we show that PHLDA3 overexpression or knockdown in control astrocytes does not significantly affect astrocyte viability or reactive oxygen species production. However, PHLDA3 knockdown in ALS astrocytes diminishes reactive oxygen species concentrations in their supernatants, indicating that pleckstrin homology-like domain family A-member 3 can facilitate stress responses in cells with altered homeostasis. In support, supernatants of PHLDA3-silenced ALS and even control spinal astrocytes with a lower pleckstrin homology-like domain family A-member 3 protein content could prevent sodium arsenite-induced stress granule formation in spinal neurons. Our findings provide evidence that reducing pleckstrin homology-like domain family A-member 3 levels may transform astrocytes into a more neurosupportive state relevant to targeting non-cell autonomous ALS pathology.
- Publication type
- Journal Article MeSH
BACKGROUND: Obesity is a major health burden. Preadipocytes proliferate and differentiate in mature adipocytes in the adipogenic process, which could be a potential therapeutic approach for obesity. Deficiency of SIRT6, a stress-responsive protein deacetylase and mono-ADP ribosyltransferase enzyme, blocks adipogenesis. Mutants of SIRT6 (N308K/A313S) were recently linked to the in the long lifespan Ashkenazi Jews. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect adipogenesis at the transcriptional and epigenetic level. METHODS: We analyzed the role of SIRT6 wild-type (WT) or SIRT6 centenarian-associated mutant (N308K/A313S) overexpression in adipogenesis, by creating stably transduced preadipocyte cell lines using lentivirus on the 3T3-L1 model. Histone post-translational modifications (PTM: acetylation, methylation) and transcriptomic changes were analyzed by mass spectrometry (LC-MS/MS) and RNA-Seq, respectively, in 3T3-L1 adipocytes. In addition, the adipogenic process and related signaling pathways were investigated by bioinformatics and biochemical approaches. RESULTS: Overexpression of centenarian-associated SIRT6 mutant increased adipogenic differentiation to a similar extent compared to the WT form. However, it triggered distinct histone PTM profiles in mature adipocytes, with significantly higher acetylation levels, and activated divergent transcriptional programs, including those dependent on signaling related to the sympathetic innervation and to PI3K pathway. 3T3-L1 mature adipocytes overexpressing SIRT6 N308K/A313S displayed increased insulin sensitivity in a neuropeptide Y (NPY)-dependent manner. CONCLUSIONS: SIRT6 N308K/A313S overexpression in mature adipocytes ameliorated glucose sensitivity and impacted sympathetic innervation signaling. These findings highlight the importance of targeting SIRT6 enzymatic activities to regulate the co-morbidities associated with obesity.
- MeSH
- Adipogenesis * genetics MeSH
- 3T3-L1 Cells * MeSH
- Epigenesis, Genetic * genetics MeSH
- Histones metabolism genetics MeSH
- Humans MeSH
- Mutation MeSH
- Mice MeSH
- Obesity genetics metabolism MeSH
- Protein Processing, Post-Translational genetics MeSH
- Sirtuins * genetics metabolism MeSH
- Adipocytes * metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH