Liposomal carrier systems have emerged as a promising technology for pulmonary drug delivery. This study focuses on two selected liposomal systems, namely, dipalmitoylphosphatidylcholine stabilized by phosphatidic acid and cholesterol (DPPC-PA-Chol) and dipalmitoylphosphatidylcholine stabilized by polyethylene glycol and cholesterol (DPPC-PEG-Chol). First, the research investigates the stability of these liposomal systems during the atomization process using different kinds of nebulizers (air-jet, vibrating mesh, and ultrasonic). The study further explores the aerodynamic particle size distribution of the aerosol generated by the nebulizers. The nebulizer that demonstrated optimal stability and particle size was selected for more detailed investigation, including Andersen cascade impactor measurements, an assessment of the influence of flow rate and breathing profiles on aerosol particle size, and an in vitro deposition study on a realistic replica of the upper airways. The most suitable combination of a nebulizer and liposomal system was DPPC-PA-Chol nebulized by a Pari LC Sprint Star in terms of stability and particle size. The influence of the inspiration flow rate on the particle size was not very strong but was not negligible either (decrease of Dv50 by 1.34 μm with the flow rate increase from 8 to 60 L/min). A similar effect was observed for realistic transient inhalation. According to the in vitro deposition measurement, approximately 90% and 70% of the aerosol penetrated downstream of the trachea using the stationary flow rate and the realistic breathing profile, respectively. These data provide an image of the potential applicability of liposomal carrier systems for nebulizer therapy. Regional lung drug deposition is patient-specific; therefore, deposition results might vary for different airway geometries. However, deposition measurement with realistic boundary conditions (airway geometry, breathing profile) brings a more realistic image of the drug delivery by the selected technology. Our results show how much data from cascade impactor testing or estimates from the fine fraction concept differ from those of a more realistic case.
- MeSH
- 1,2-Dipalmitoylphosphatidylcholine MeSH
- Aerosols MeSH
- Administration, Inhalation MeSH
- Bronchodilator Agents * MeSH
- Cholesterol MeSH
- Equipment Design MeSH
- Drug Delivery Systems MeSH
- Humans MeSH
- Liposomes MeSH
- Nebulizers and Vaporizers MeSH
- Trachea * MeSH
- Particle Size MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Information on the indoor environment as a source of exposure with potential adverse health effects is mostly limited to a few pollutant groups and indoor types. This study provides a comprehensive toxicological profile of chemical mixtures associated with dust from various types of indoor environments, namely cars, houses, prefabricated apartments, kindergartens, offices, public spaces, and schools. Organic extracts of two different polarities and bioaccessible extracts mimicking the gastrointestinal conditions were prepared from two different particle size fractions of dust. These extracts were tested on a battery of human cell-based bioassays to assess endocrine disrupting potentials. Furthermore, 155 chemicals from different pollutant groups were measured and their relevance for the bioactivity was determined using concentration addition modelling. The exhaustive and bioaccessible extracts of dust from the different microenvironments interfered with aryl hydrocarbon receptor, estrogen, androgen, glucocorticoid, and thyroid hormone (TH) receptor signalling, and with TH transport. Noteably, bioaccessible extracts from offices and public spaces showed higher estrogenic effects than the organic solvent extracts. 114 of the 155 targeted chemicals were detectable, but the observed bioactivity could be only marginally explained by the detected chemicals. Diverse toxicity patterns across different microenvironments that people inhabit throughout their lifetime indicate potential health and developmental risks, especially for children. Limited data on the endocrine disrupting potency of relevant chemical classes, especially those deployed as replacements for legacy contaminants, requires further study.
Many semi-volatile organic compounds (SVOCs) accumulate in indoor dust, which serves as a repository for those compounds. The presence of SVOCs in indoor environments is of concern because many of them are suspected to have toxic effects. Total SVOC concentrations in the dust are generally used for exposure assessment to indoor contaminants, assuming that 100% of the SVOCs is accessible for human uptake. However, such an assumption may potentially lead to an overestimated risk related to dust exposure. We applied a multi-ratio equilibrium passive sampling (MR-EPS) for estimation of SVOC accessibility in indoor settled dust using silicone passive samplers and three particle size dust fractions, <0.25 mm, 0.25-0.5 mm, and 1-2 mm in dry and wet conditions. Equilibrations were performed at various sampler-dust mass ratios to achieve different degrees of SVOC depletion, allowing the construction of a desorption isotherm. The desorption isotherms provided accessible fractions (FAS), equivalent air concentrations (CAIR), dust-air partition coefficients (KDUST-AIR) and organic carbon-air partition coefficients (KOC-AIR). The highest FAS were observed in the <0.25 mm dust fraction in wet conditions which is relevant for exposure assessment via oral ingestion. The highest CAIR were estimated for several organophosphorus flame retardants (OPFRs), polycyclic aromatic hydrocarbons (PAHs) and synthetic musks. The logKOC-AIR did not differ between dust particle sizes in dry and wet conditions but within compound groups, different relationships with hydrophobicity were observed. Equivalent lipid-based concentrations (CL⇌DUST) calculated using available lipid-silicone partition coefficients (KLIP-SIL) were compared with lipid-based concentrations (CL) measured in human-related samples collected from Europeans. For hexachlorobenzene (HCB), CL⇌DUST, and CL were similar, indicating equilibrium attainment between environment and human samples. Lipid-based concentrations for persistent legacy contaminants were also similar but lower for PBDEs in human samples. Overall, accessibility estimation using MR-EPS in dust further contributes to human risk assessment.
- MeSH
- Risk Assessment MeSH
- Humans MeSH
- Lipids MeSH
- Environmental Monitoring MeSH
- Dust analysis MeSH
- Flame Retardants * analysis MeSH
- Volatile Organic Compounds * analysis MeSH
- Air Pollution, Indoor * analysis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The properties of dry-coated paracetamol particles (fast-dissolving model drug) with carnauba wax particles as the coating agent (dissolution retardant) were investigated. Raman mapping technique was used to non-destructively examine the thickness and homogeneity of coated particles. The results showed that the wax existed in two forms on the surface of the paracetamol particles, forming a porous coating layer: i) whole wax particles on the surface of paracetamol and glued together with other wax surface particles, and ii) deformed wax particles spread on the surface. Regardless of the final particle size fraction (between 100 and 800 μm), the coating thickness had high variability, with average thickness of 5.9 ± 4.2 μm. The ability of carnauba wax to decrease the dissolution rate of paracetamol was confirmed by dissolution of powder and tablet formulations. The dissolution was slower for larger coated particles. Tableting further reduced the dissolution rate, clearly indicating the impact of subsequent formulation processes on the final quality of the product.
- Publication type
- Journal Article MeSH
Formulace mikročástic složených ze směsi nosičů představuje inovativní přístup pro podání léčiv do plic ve formě suchého prášku. Použité nosiče mohou významně ovlivnit výsledné vlastnosti mikročástic, jako je velikost, tvar, povrch, hygroskopicita či agregace, a tím zlepšit aerosolizaci léčiv po jejich inhalaci. Zmíněné vlastnosti jsou klíčové pro efektivní pulmonální terapii. Kombinací nosičů povahy sacharidů a gelujících látek je výhodné pro řízené uvolňování léčiva. Cílem experimentální práce bylo sprejovým sušením připravit a následně zhodnotit několik šarží mikročástic složených z nosičů na bázi cukrů (manitol, maltodextrin, dextran) a gelujících sacharidů (chitosan, chondroitin-sulfát) a vybrat vhodnou kombinaci pro navazující experimentální práce zaměřené na inkorporaci léčiva do mikročásticové matrice. Nejvhodnější parametry vykazovaly šarže, jejichž aerodynamický průměr se blížil 5 μm, a to částice připravené z kombinace manitolu a dextranu, chitosanu a chondroitinu nebo maltodextrinu a chondoitinu. U těchto šarží byla také naměřena nejvyšší hodnota frakce jemných částic (> 43 %). Z pohledu zpracovatelnosti je vhodná šarže se zastoupením maltodextrinu a chondroitinu vzhledem k nižší viskozitě vstupní disperze a pravidelnějšímu tvaru finálních mikročástic.
The formulation of microparticles composed of a mixture of carriers represents an innovative approach for lung drug delivery of dry powder. The carriers used can significantly influence the properties of the microparticles, such as size, shape, surface area, hygroscopicity, or aggregation, thus improving the aerosolization of the drugs after inhalation. The properties mentioned above are crucial for effective pulmonary therapy. The combination of carriers of a carbohydrate nature and gelling agents is advantageous for controlled drug release. The experimental work aimed to prepare by spray drying and subsequently evaluate ten batches of microparticles composed of sugar-based carriers (mannitol, maltodextrin, dextran) and gelling polymers (chitosan, chondroitin sulfate) and to select a suitable combination for follow-up experimental work aimed at drug incorporation into the microparticle matrix. The most suitable parameters were exhibited by batches whose aerodynamic diameter was close to 5 μm, particles prepared from a combination of mannitol and dextran, chitosan and chondroitin, or maltodextrin and chondroitin. These batches also showed the highest fine particle fraction value (> 43%). From a processability point of view, the batch with maltodextrin and chondroitin is preferable due to the lower viscosity of the dispersion and the more regular shape of the final microparticles.
- MeSH
- Administration, Inhalation MeSH
- Pharmaceutical Research MeSH
- Humans MeSH
- Microplastics MeSH
- Drug Carriers * MeSH
- Spray Drying MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
The utilization of plant by-products as functional food ingredients has received increasing attention in the last decade. One such by-product generated during milk thistle oil pressing is oilseed cakes, which could be used as a novel food ingredient. Therefore, the study aimed at investigating the effects of the addition of milk thistle oilseed cake (MTOC) flour fractions obtained via dry sieving, differing in particle size (unsieved; coarse: >710 μm; medium: 315-710 μm; and fine: <315 μm), on the quality of gluten-free bread and stability of silymarin during breadmaking. The 10% addition of the fractions into gluten-free bread increased the protein, fibre, fat, ash and silymarin content. The breads with the coarse fraction had the highest content of fibre, whereas the breads with the fine fraction excelled in protein, fat and ash content. The medium fraction was characterized as the richest source of silymarin, whilst the fine fraction was the poorest. Silymarin constituents were slightly released during dough rising but also partially decomposed during baking; moreover, silydianin was the most susceptible and degraded the most. The enriched breads had better sensory and textural properties compared to the control bread. The results suggest that MTOC flour fractions can improve the potential health benefits and nutritional profile of gluten-free bread.
- Publication type
- Journal Article MeSH
Flowability is among the most important properties of powders, especially when fine particle size fractions need to be processed. In this study, our goal was to find a possibly simple but accurate mathematical model for predicting the mass flow rate for different fractions of the pharmaceutical excipient sorbitol for direct compression. Various regression models derived from the Jones-Pilpel equation for the prediction of the mass flow rate were investigated. Using validation with experimental data for various particle and hopper orifice sizes, we focused on the prediction accuracy of the respective models, i.e., on the relative difference between measured and model-predicted values. Classical indicators of regression quality from statistics were addressed as well, but we consider high prediction accuracy to be particularly important for industrial processing in practice. For individual particle size fractions, the best results (an average prediction accuracy of 3.8%) were obtained using simple regression on orifice size. However, for higher accuracy (3.1%) in a unifying model, valid in the broad particle size range 0.100-0.346 mm, a fully quadratic model, incorporating interaction between particle and orifice size, appears to be most appropriate.
- Publication type
- Journal Article MeSH
Extracellular vesicles (EVs) are membranous structures in biofluids with enormous diagnostic/prognostic potential for application in liquid biopsies. Any such downstream application requires a detailed characterization of EV concentration, size and morphology. This study aimed to observe the native morphology of EVs in human cerebrospinal fluid after traumatic brain injury. Therefore, they were separated by gravity-driven size-exclusion chromatography (SEC) and investigated by atomic force microscopy (AFM) in liquid and cryogenic transmission electron microscopy (cryo-TEM). The enrichment of EVs in early SEC fractions was confirmed by immunoblot for transmembrane proteins CD9 and CD81. These fractions were then pooled, and the concentration and particle size distribution were determined by Tunable Resistive Pulse Sensing (around 1010 particles/mL, mode 100 nm) and Nanoparticle Tracking Analysis (around 109 particles/mL, mode 150 nm). Liquid AFM and cryo-TEM investigations showed mode sizes of about 60 and 90 nm, respectively, and various morphology features. AFM revealed round, concave, multilobed EV structures; and cryo-TEM identified single, double and multi-membrane EVs. By combining AFM for the surface morphology investigation and cryo-TEM for internal structure differentiation, EV morphological subpopulations in cerebrospinal fluid could be identified. These subpopulations should be further investigated because they could have different biological functions.
- Publication type
- Journal Article MeSH
Dry powder inhalers are used by a large number of patients worldwide to treat respiratory diseases. The objective of this work is to experimentally investigate changes in aerosol particle diameter and particle number concentration of pharmaceutical aerosols generated by four dry powder inhalers under realistic inhalation and exhalation conditions. To simulate patients undergoing inhalation therapy, the active respiratory system model (xPULMTM) was used. A mechanical upper airway model was developed, manufactured, and introduced as a part of the xPULMTM to represent the human upper respiratory tract with high fidelity. Integration of optical aerosol spectrometry technique into the setup allowed for evaluation of pharmaceutical aerosols. The results show that there is a significant difference (p < 0.05) in mean particle diameter between inhaled and exhaled particles with the majority of the particles depositing in the lung, while particles with the size of (>0.5 μm) are least influenced by deposition mechanisms. The fraction of exhaled particles ranges from 2.13% (HandiHaler®) over 2.94% (BreezHaler®), and 6.22% (Turbohaler®) to 10.24% (Ellipta®). These values are comparable to previously published studies. Furthermore, the mechanical upper airway model increases the resistance of the overall system and acts as a filter for larger particles (>3 μm). In conclusion, the xPULMTM active respiratory system model is a viable option for studying interactions of pharmaceutical aerosols and the respiratory tract regarding applicable deposition mechanisms. The model strives to support the reduction of animal experimentation in aerosol research and provides an alternative to experiments with human subjects.
- Publication type
- Journal Article MeSH
The adverse effects of air pollutants on the respiratory and cardiovascular systems are unquestionable. However, in recent years, indications of effects beyond these organ systems have become more evident. Traffic-related air pollution has been linked with neurological diseases, exacerbated cognitive dysfunction, and Alzheimer's disease. However, the exact air pollutant compositions and exposure scenarios leading to these adverse health effects are not known. Although several components of air pollution may be at play, recent experimental studies point to a key role of ultrafine particles (UFPs). While the importance of UFPs has been recognized, almost nothing is known about the smallest fraction of UFPs, and only >23 nm emissions are regulated in the EU. Moreover, the role of the semivolatile fraction of the emissions has been neglected. The Transport-Derived Ultrafines and the Brain Effects (TUBE) project will increase knowledge on harmful ultrafine air pollutants, as well as semivolatile compounds related to adverse health effects. By including all the major current combustion and emission control technologies, the TUBE project aims to provide new information on the adverse health effects of current traffic, as well as information for decision makers to develop more effective emission legislation. Most importantly, the TUBE project will include adverse health effects beyond the respiratory system; TUBE will assess how air pollution affects the brain and how air pollution particles might be removed from the brain. The purpose of this report is to describe the TUBE project, its background, and its goals.