Pore size Dotaz Zobrazit nápovědu
Distribuce molárních hmotností je jednou z velmi důležitých vlastností polymerů stanovovaných již od doby, kdy Staudinger prosadil koncept makromolekul. První metody používané pro stanovení této distribuce byly však zdlouhavé a náročné na obsluhu. To se změnilo v roce 1964, kdy J. C. Moore, pracovník firmy Dow Chemical Company, zveřejnil metodu jím nazvanou gelová permeační chromatografie (GPC) a dnes známou spíše jako vylučovací chromatografie (size exclusion chromatography, SEC). Její princip spočíval v dělení makromolekul podle velikosti na základě jejich permeace do pevné stacionární fáze, která obsahovala síť pórů různých velikostí. Dělené molekuly difundovaly pouze do pórů, které byly větší, než byla jejich velikost. Takže menší molekuly permeovaly do většího počtu pórů než molekuly velké, a tudíž se zdržely v koloně déle. Jednotlivé polymerní molekuly pak opouštěly kolonu v pořadí od největších po nejmenší. Aby se tato technika mohla rozšířit, bylo potřeba nalézt výrobce odpovídajícího přístroje, kterým se stal podnik vlastněný J. L. Watersem. Byl to důležitý počin pro jeho firmu, z níž se díky SEC stal dnes jeden z největších světových producentů zařízení pro kapalinovou chromatografii, kam SEC také patří.
Molar mass distribution is one of the most important properties of polymers that has been determined since Staudinger introduced the concept of macromolecules. However, the first methods used to determine this distribution were tedious and difficult to use. This changed in 1964 when J. C. Moore of the Dow Chemical Company published a method he called gel permeation chromatography, now better known as size exclusion chromatography (SEC). The principle was to separate macromolecules by size based on their permeation through a solid stationary phase containing a network of pores of different sizes. The separated molecules diffused only into pores larger than their size. As a result, the smaller molecules permeated into a greater number of pores than the larger molecules and therefore remained in the column longer. The individual polymer molecules then left the column in order from largest to smallest. To scale up this technique, it was necessary to find a manufacturer of a suitable instrument, which was a company owned by J. L. Waters. This was a major achievement for his company, which, thanks to SEC, is now one of the world's largest manufacturers of equipment for liquid chromatography, of which SEC is a part.
In this study, a reproducible method of fabricating hierarchically 3D porous scaffolds with high porosity and pore interconnectivity is reported. The method is based on in-situ foaming of a dispersion of diisocyanate, polyol, water and hydroxyapatite (HA) to form a hard foamed HA/polyurethane composite which after heat treatment provided a bi-phase calcium phosphate scaffold. This technique, combining the advantages of polymer sponge and direct foaming methods, provides a better control over the macrostructure of the scaffold. A modification of the multi-scaled porous macrostructure of scaffolds produced by changing the ratio of input reactants and by sintering temperature was studied. The pore morphology, size, and distribution were characterized using a scanning electron microscope and mercury porosimetry. The pores were open and interconnected with multi-scale (from several nanometres to millimetres) sizes convenient for using in tissue engineering applications. The bioactivity was confirmed by growing an apatite layer on the surfaces after immersion in simulated body fluid. The material was biocompatible, as shown by using normal human adipose tissue-derived stem cells (ASC). When seeded onto the scaffolds, the ASC adhered and remained healthy while maintaining their typical morphology.
A large subgroup of the repeat in toxin (RTX) family of leukotoxins of Gram-negative pathogens consists of pore-forming hemolysins. These can permeabilize mammalian erythrocytes (RBCs) and provoke their colloid osmotic lysis (hemolytic activity). Recently, ATP leakage through pannexin channels and P2X receptor-mediated opening of cellular calcium and potassium channels were implicated in cell permeabilization by pore-forming toxins. In the study described here, we examined the role played by purinergic signaling in the cytolytic action of two RTX toxins that form pores of different sizes. The cytolytic potency of ApxIA hemolysin of Actinobacillus pleuropneumoniae, which forms pores about 2.4 nm wide, was clearly reduced in the presence of P2X7 receptor antagonists or an ATP scavenger, such as pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), Brilliant Blue G, ATP oxidized sodium salt, or hexokinase. In contrast, antagonists of purinergic signaling had no impact on the hemolytic potency of the adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis, which forms pores of 0.6 to 0.8 nm in diameter. Moreover, the conductance of pores formed by ApxIA increased with the toxin concentration, while the conductance of the CyaA single pore units was constant at various toxin concentrations. However, the P2X7 receptor antagonist PPADS inhibited in a concentration-dependent manner the exacerbated hemolytic activity of a CyaA-ΔN489 construct (lacking 489 N-terminal residues of CyaA), which exhibited a strongly enhanced pore-forming propensity (>20-fold) and also formed severalfold larger conductance units in planar lipid bilayers than intact CyaA. These results point to a pore size threshold of purinergic amplification involvement in cell permeabilization by pore-forming RTX toxins.
- MeSH
- Actinobacillus pleuropneumoniae metabolismus MeSH
- adenylátcyklasový toxin antagonisté a inhibitory chemie metabolismus MeSH
- bakteriální proteiny antagonisté a inhibitory chemie metabolismus MeSH
- Bordetella pertussis metabolismus MeSH
- buněčná membrána metabolismus MeSH
- erytrocyty metabolismus MeSH
- hemolýza * MeSH
- hemolyziny antagonisté a inhibitory chemie metabolismus MeSH
- hexokinasa MeSH
- kultivované buňky MeSH
- lipidové dvojvrstvy metabolismus MeSH
- makrofágy MeSH
- myši MeSH
- osmotický tlak MeSH
- permeabilita buněčné membrány MeSH
- pyridoxalfosfát analogy a deriváty MeSH
- rosanilinová barviva MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A chromatographic characterization of pore volume accessibility for both particulate and monolithic stationary phases is presented. Size-exclusion calibration curves have been used to determine the pore volume fraction that is accessible for six alkylbenzenes and twelve polystyrene standards in tetrahydrofuran as the mobile phase. Accessible porosity has been then correlated with the size of the pores from which individual compounds are just excluded. I have determined pore volume accessibility of commercially available columns packed with fully and superficially porous particles, as well as with silica-based monolithic stationary phase. I also have investigated pore accessibility of polymer-based monolithic stationary phases. Suggested protocol is used to characterize pore formation at the early stage of the polymerization, to evaluate an extent of hypercrosslinking during modification of pore surface, and to characterize the pore accessibility of monolithic stationary phases hypercrosslinked after an early termination of polymerization reaction. Pore volume accessibility was also correlated to column efficiency of both particulate and monolithic stationary phases.
Recent advancements in particle design are common in reversed-phase liquid chromatography (RPLC), but in chiral separations their use is still sporadic in commercially available chiral stationary phases (CSPs). Due to reported lower mass transfer resistance, they might be a promising opportunity to increase efficiency and reduce time of analysis since the relatively higher mass transfer resistance term of CSPs caused by slow adsorption-desorption kinetics is the most performance-limiting factor in enantioselective chromatography. This study was dedicated to the evaluation of new support materials for tert-butylcarbamoylquinine (tBuCQN) based CSP to provide highly efficient and fast enantioseparations. As the main focus of this study, the chiral selector tBuCQN was immobilized on sub-2 μm fully porous particles (FPPs) and 2.7 μm superficially porous particles (SPPs) and their column performance in enantioseparation was evaluated in comparison to 5 μm FPPs by van Deemter and Knox analyses as well as kinetic plots using racemic Fmoc-Phe. Both new particle types outperformed the 5 μm FPP benchmark in terms of speed and efficiency, with wider pore materials (160 or 200 Å) being advantageous (over 90 or 120 Å). Basically decisive for the performance gain was the 10-times smaller mass transfer resistance. Furthermore, 2.7 μm 160 Å SPPs outperformed their fully porous sub-2 μm 120 Å counterpart (HminR = 4.64 μm vs. HminR = 8.94 μm) due to various parameters affording reduced plate height h of 1.7. Caused by the inaccessible core, separations were about 2-times faster. Packing of 2.7 μm core-shell particles provided a very homogeneous column bed, and, owing to its higher permeability, the column backpressure was much lower. It enables packing of longer columns providing theoretically separation efficiencies of up to 106 plates per m (as indicated by kinetic plots) and versatile use without the necessity of UHPLC systems. Investigating the effect of particle size reduction (FPPs: 5 μm, 3 μm, 1.7 μm; SPPs: 2.7 μm, 2 μm) and wider pores (FPPs: 120 Å, 200 Å; SPPs: 90 Å, 160 Å), a significantly reduced mass transfer resistance was the driving force for performance gain. Individual contributions of peak dispersion were deconvoluted for 5 μm FPP CSP and confirmed that slow adsorption-desorption kinetics is the most significant contribution to peak broadening in this chromatographic system.
The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the "Dip TIPS" as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields.
- MeSH
- bioinženýrství metody MeSH
- časové faktory MeSH
- diferenciální skenovací kalorimetrie MeSH
- mikroskopie elektronová rastrovací MeSH
- molekulová hmotnost MeSH
- polymery chemie MeSH
- poréznost MeSH
- potkani inbrední BN MeSH
- povrchové vlastnosti MeSH
- rtuť analýza MeSH
- teplota * MeSH
- tkáňové podpůrné struktury chemie MeSH
- změna skupenství * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Collagen-based scaffolds provide a promising option for the treatment of bone defects. One of the key parameters of such scaffolds consists of porosity, including pore size. However, to date, no agreement has been found with respect to the methodology for pore size evaluation. Since the determination of the exact pore size value is not possible, the comparison of the various methods applied is complicated. Hence, this study focuses on the comparison of two widely-used methods for the characterization of porosity-scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). METHODS: 7 types of collagen-based composite scaffold models were prepared by means of lyophilization and collagen cross-linking. Micro-CT analysis was performed in 3D and in 2D (pore size parameters were: major diameter, mean thickness, biggest inner circle diameter and area-equivalent circle diameter). Afterwards, pore sizes were analyzed in the same specimens by an image analysis of SEM microphotographs. The results were statistically evaluated. The comparison of the various approaches to the evaluation of pore size was based on coefficients of variance and the semi-quantitative assessment of selected qualities (e.g. the potential for direct 3D analysis, whole specimen analysis, non-destructivity). RESULTS: The pore size values differed significantly with respect to the parameters applied. Median values of pore size values were ranging from 20 to 490 µm. The SEM values were approximately 3 times higher than micro-CT 3D values for each specimen. The Mean thickness was the most advantageous micro-CT 2D approach. Coefficient of variance revealed no differences among pore size parameters (except major diameter). The semi-quantitative comparison approach presented pore size parameters in descending order with regard to the advantages thereof as follows: (1) micro-CT 3D, (2) mean thickness and SEM, (3) biggest inner circle diameter, major diameter and area equivalent circle diameter. CONCLUSION: The results indicated that micro-CT 3D evaluation provides the most beneficial overall approach. Micro-CT 2D analysis (mean thickness) is advantageous in terms of its time efficacy. SEM is still considered as gold standard for its widespread use and high resolution. However, exact comparison of pore size analysis in scaffold materials remains a challenge.
BACKGROUND: The aim of the study was to evaluate the influence of the pore size of a polypropylene mesh on the shrinkage and elasticity of the mesh-tissue complex and the inflammatory reaction to the implant in an open onlay hernia repair. MATERIALS AND METHODS: Twenty-one 10 × 10 cm samples of polypropylene meshes of a different pore size (3.0 × 2.8 mm-PP3, 1.0 × 0.8 mm-PP1 and 0.6 × 0.5 mm-PP.5) were implanted in an onlay position in 21 New Zealand white rabbits. After 90 days of implantation the shrinkage, elasticity and foreign body reaction (FBR) were assessed. RESULTS: The shrinkage of PP3 was 30.6 ± 4.3 %, PP1 49.3 ± 2.9 % and PP.5 49.5 ± 2.6 %. The shrinkage of PP3 was significantly lower (PP3 × PP1 p = 0.007, PP3 × PP.5 p = 0.005), PP1 and PP.5 were similar. The elasticity was similar. The strength of FBR in mesh pores was similar. The width of foreign body granuloma layers at the mesh-tissue interface was significantly reduced with increasing pore size (inner: PP3 10.1 ± 1.2; PP1 12.5 ± 2.9; PP.5 17.4 ± 5.2 and outer: PP3 21.2 ± 2.5; PP1 30.6 ± 6.3; PP.5 60.4 ± 14.9). All differences between the widths of granuloma layers were statistically significant (p < 0.010). One animal (PP1) was excluded because of a mesh infection. CONCLUSIONS: Implantation of polypropylene mesh of a pore size of 3 mm in an onlay position is associated with a significant reduction of shrinkage in comparison to a 1 mm pore lightweight and 0.5 mm pore heavyweight mesh. A pore size increase to 3 mm is not sufficient for an improvement of mesh-tissue complex elasticity in comparison to a 1 mm pore lightweight and 0.5 mm heavyweight mesh. Polypropylene mesh with enlarged pores to 3 mm is associated with a similar strength of FBR in mesh pores and a reduced foreign body granuloma in comparison to a 1 mm pore lightweight and 0.5 mm pore heavyweight mesh.
- MeSH
- biokompatibilní materiály MeSH
- chirurgické síťky * škodlivé účinky MeSH
- granulom z cizího tělesa etiologie patologie MeSH
- králíci MeSH
- modely nemocí na zvířatech MeSH
- operace kýly * MeSH
- polypropyleny škodlivé účinky MeSH
- pružnost MeSH
- testování materiálů MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The mathematical prediction of cell proliferation in porous scaffold still remains a challenge. The analysis of existing models and experimental data confirms a need for a new solution, which takes into account cells" development on the scaffold pore walls as well as some additional parameters such as the pore size, cell density in cellular layers, the thickness of the growing cell layer and others. The simulations, presented below, are based on three main approaches. The first approach takes into account multilayer cell growth on the pore walls of the scaffold. The second approach is a simulation of cell proliferation in a discrete process as a continuous one. The third one is the representation of scaffold structure as a system of cylindrical channels. Oxygen (nutrient) mass transfer is realized inside these channels. The model, described below, proposes the new solution to time dependent description of cell proliferation in porous scaffold and optimized trophical conditions for tissue development.