Cellular mechanisms that safeguard genome integrity are often subverted in cancer. To identify cancer-related genome caretakers, we employed a convergent multi-screening strategy coupled to quantitative image-based cytometry and ranked candidate genes according to multivariate readouts reflecting viability, proliferative capacity, replisome integrity, and DNA damage signaling. This unveiled regulators of replication stress resilience, including components of the pre-mRNA cleavage and polyadenylation complex. We show that deregulation of pre-mRNA cleavage impairs replication fork speed and leads to excessive origin activity, rendering cells highly dependent on ATR function. While excessive formation of RNA:DNA hybrids under these conditions was tightly associated with replication-stress-induced DNA damage, inhibition of transcription rescued fork speed, origin activation, and alleviated replication catastrophe. Uncoupling of pre-mRNA cleavage from co-transcriptional processing and export also protected cells from replication-stress-associated DNA damage, suggesting that pre-mRNA cleavage provides a mechanism to efficiently release nascent transcripts and thereby prevent gene gating-associated genomic instability.
- MeSH
- Active Transport, Cell Nucleus MeSH
- DNA, Neoplasm genetics metabolism MeSH
- HeLa Cells MeSH
- Nucleic Acid Heteroduplexes genetics metabolism MeSH
- Nuclear Proteins genetics metabolism MeSH
- Humans MeSH
- RNA, Messenger biosynthesis genetics MeSH
- Neoplasms genetics metabolism MeSH
- Genomic Instability * MeSH
- Polyadenylation MeSH
- DNA Damage * MeSH
- RNA Precursors biosynthesis genetics MeSH
- Cell Cycle Proteins genetics metabolism MeSH
- Gene Expression Regulation, Neoplastic MeSH
- DNA Replication * MeSH
- RNA, Neoplasm biosynthesis genetics MeSH
- RNA Cleavage * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Several oligothymidylates containing various ratios of phosphodiester and isopolar 5'-hydroxyphosphonate, 5'-O-methylphosphonate and 3'-O-methylphosphonate internucleotide linkages were examined with respect to their hybridization properties with oligoriboadenylates and their ability to induce RNA cleavage by ribonuclease H (RNase H). The results demonstrated that the increasing number of 5'-hydroxyphosphonate or 5'-O-methylphosphonate units in antisense oligonucleotides (AOs) significantly stabilizes the heteroduplexes, whereas 3'-O-methylphosphonate AOs cause strong destabilization of the heteroduplexes. Only the heteroduplexes with 5'-O-methylphosphonate units in the antisense strand exhibited a significant increase in Escherichia coli RNase H cleavage activity by up to 3-fold (depending on the ratio of phosphodiester and phosphonate linkages) in comparison with the natural heteroduplex. A similar increase in RNase H cleavage activity was also observed for heteroduplexes composed of miRNA191 and complementary AOs containing 5'-O-methylphosphonate units. We propose for this type of AOs, working via the RNase H mechanism, the abbreviation MEPNA (MEthylPhosphonate Nucleic Acid).
5-(β-d-Glucopyranosyloxymethyl)-2'-deoxyuridine and -cytidine 5'-O-triphosphates were prepared and used for polymerase-mediated (primer extension or PCR) synthesis of DNA containing glucosylated 5-hydroxymethyluracil (5hmU) or 5-hydroxymethyluracil (5hmC). The presence of any glucosylated pyrimidines fully protected DNA from cleavage by type II restriction endonucleases. On the other hand, while the presence of glucosylated 5hmU completely inhibited transcription by bacterial (Escherichia coli) RNA polymerase, the DNA containing the corresponding glucosylated 5hmC allowed a similar level of transcription as natural DNA. This suggests different roles of these hypermodified bases in the epigenetic regulation of transcription in bacteriophages or kinetoplastid parasites. Consequently, enzymatic glucosylation of 5hmC-containing DNA can be used for tuning of transcription activity.
- MeSH
- DNA-Directed RNA Polymerases MeSH
- DNA * MeSH
- Epigenesis, Genetic * MeSH
- Polymerase Chain Reaction MeSH
- Publication type
- Journal Article MeSH
The condensation of the 5′-O-DMT-3′-deoxy-3′-aminothymidine with 3′-O-TBDMS-thymidine- 5′-aldehyde, followed by reduction of the resultant imine derivative and removal of tert-butyldimethylsilyl (TBDMS) protecting group, provided a dimer (denoted as TNHT), which is a congener of dithymidine phosphate with the phosphate linkage 3′-O-P(O)(OH)-O-5′ replaced with an amino group (–NH–). After phosphitylation of the 3′-OH group, the dimer TNHT was introduced (by the standard phosphoramidite approach) into a central part of the nonadecathymidylate. This oligomer exhibited lower affinity to the complementary single and double stranded DNA complements as compared to unmodified T19 oligonucleotide. The cleavage of modified oligomer with the snake venom and calf spleen phosphodiesterases was completely suppressed at the site of modification. RNA oligomers containing the TNHT dimer were used for preparation of siRNA molecules directed towards mRNA of BACE1 (beta-site amyloid precursor protein cleaving enzyme). The presence of the TNHT units at the 3′-ends of the RNA strands of the siRNA molecule (the siRNA itself is an effective gene expression inhibitor for BACE1) preserved the gene silencing activity and improved the stability of the modified siRNA in 10% fetal bovine serum.
In the Avocado Sunblotch Viroid (ASBVd: 249-nt) from the Avsunviroidae family, a symmetric rolling-circle replication operates through an autocatalytic mechanism mediated by hammerhead ribozymes (HHR) embedded in both polarity strands. The concatenated multimeric ASBVd (+) and ASBVd (-) RNAs thus generated are processed by cleavage to unit-length where ASBVd (-) self-cleaves with more efficiency. Absolute scale small angle neutron scattering (SANS) revealed a temperature-dependent dimer association in both ASBVd (-) and its derived 79-nt HHR (-). A joint thermodynamic analysis of SANS and catalytic data indicates the rate-determining step corresponds to the dimer/monomer transition. 2D and 3D models of monomeric and dimeric HHR (-) suggest that the inter-molecular contacts stabilizing the dimer (between HI and HII domains) compete with the intra-molecular ones stabilizing the active conformation of the full-length HHR required for an efficient self-cleavage. Similar competing intra- and inter-molecular contacts are proposed in ASBVd (-) though with a remoter region from an extension of the HI domain.
In numerous Gram-positive bacteria, the glmS ribozyme or catalytic riboswitch regulates the expression of glucosamine-6-phosphate (GlcN6P) synthase via site-specific cleavage of its sugar-phosphate backbone in response to GlcN6P ligand binding. Biochemical data have suggested a crucial catalytic role for an active site guanine (G40 in Thermoanaerobacter tengcongensis, G33 in Bacillus anthracis). We used hybrid quantum chemical/molecular mechanical (QM/MM) calculations to probe the mechanism where G40 is deprotonated and acts as a general base. The calculations suggest that the deprotonated guanine G40(-) is sufficiently reactive to overcome the thermodynamic penalty arising from its rare protonation state, and thus is able to activate the A-1(2'-OH) group toward nucleophilic attack on the adjacent backbone. Furthermore, deprotonation of A-1(2'-OH) and nucleophilic attack are predicted to occur as separate steps, where activation of A-1(2'-OH) precedes nucleophilic attack. Conversely, the transition state associated with the rate-determining step corresponds to concurrent nucleophilic attack and protonation of the G1(O5') leaving group by the ammonium moiety of the GlcN6P cofactor. Overall, our calculations help to explain the crucial roles of G40 (as a general base) and GlcN6P (as a general acid) during glmS ribozyme self-cleavage. In addition, we show that the QM/MM description of the glmS ribozyme self-cleavage reaction is significantly more sensitive to the size of the QM region and the quality of the QM-MM coupling than that of other small ribozymes.
Quorum sensing is a cell density-dependent communication system of bacteria relying on autoinducer molecules. During the analysis of the post-transcriptional regulation of quorum sensing in the nitrogen fixing plant symbiont Sinorhizobium meliloti, we predicted and verified a direct interaction between the 5'-UTR of sinI mRNA encoding the autoinducer synthase and a small RNA (sRNA), which we named RcsR1. In vitro, RcsR1 prevented cleavage in the 5'-UTR of sinI by RNase E and impaired sinI translation. In line with low ribosomal occupancy and transcript destabilization upon binding of RcsR1 to sinI, overproduction of RcsR1 in S. meliloti resulted in lower level and shorter half-life of sinI mRNA, and in decreased autoinducer amount. Although RcsR1 can influence quorum sensing via sinI, its level did not vary at different cell densities, but decreased under salt stress and increased at low temperature. We found that RcsR1 and its stress-related expression pattern, but not the interaction with sinI homologs, are conserved in Sinorhizobium, Rhizobium and Agrobacterium. Consistently, overproduction of RcsR1 in S. meliloti and Agrobacterium tumefaciens inhibited growth at high salinity. We identified conserved targets of RcsR1 and showed that most conserved interactions and the effect on growth under salt stress are mediated by the first stem-loop of RcsR1, while its central part is responsible for the species-specific interaction with sinI. We conclude that RcsR1 is an ancient, stress-related riboregulator in rhizobia and propose that it links stress responses to quorum sensing in S. meliloti.
- MeSH
- 5' Untranslated Regions MeSH
- Bacterial Proteins genetics MeSH
- RNA, Bacterial genetics MeSH
- Stress, Physiological * MeSH
- Conserved Sequence MeSH
- RNA, Small Untranslated genetics MeSH
- RNA, Messenger genetics MeSH
- Quorum Sensing MeSH
- Gene Expression Regulation, Bacterial MeSH
- Salinity MeSH
- Base Sequence MeSH
- Sinorhizobium meliloti genetics physiology MeSH
- Transcription Factors genetics MeSH
- Publication type
- Journal Article MeSH
Leishmania parasites cause a variety of symptoms, including mucocutaneous leishmaniasis, which results in the destruction of the mucous membranes of the nose, mouth, and throat. The species of Leishmania carrying Leishmania RNA virus 1 (LRV1), from the family Totiviridae, are more likely to cause severe disease and are less sensitive to treatment than those that do not contain the virus. Although the importance of LRV1 for the severity of leishmaniasis was discovered a long time ago, the structure of the virus remained unknown. Here, we present a cryo-electron microscopy reconstruction of the virus-like particle of LRV1 determined to a resolution of 3.65 Å. The capsid has icosahedral symmetry and is formed by 120 copies of a capsid protein assembled in asymmetric dimers. RNA genomes of viruses from the family Totiviridae are synthetized, but not capped at the 5' end, by virus RNA polymerases. To protect viral RNAs from degradation, capsid proteins of the L-A totivirus cleave the 5' caps of host mRNAs, creating decoys to overload the cellular RNA quality control system. Capsid proteins of LRV1 form positively charged clefts, which may be the cleavage sites for the 5' cap of Leishmania mRNAs. The putative RNA binding site of LRV1 is distinct from that of the related L-A virus. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative decapping site. Such inhibitors may be developed into a treatment for mucocutaneous leishmaniasis caused by LRV1-positive species of LeishmaniaIMPORTANCE Twelve million people worldwide suffer from leishmaniasis, resulting in more than 30 thousand deaths annually. The disease has several variants that differ in their symptoms. The mucocutaneous form, which leads to disintegration of the nasal septum, lips, and palate, is caused predominantly by Leishmania parasites carrying Leishmania RNA virus 1 (LRV1). Here, we present the structure of the LRV1 capsid determined using cryo-electron microscopy. Capsid proteins of a related totivirus, L-A virus, protect viral RNAs from degradation by cleaving the 5' caps of host mRNAs. Capsid proteins of LRV1 may have the same function. We show that the LRV1 capsid contains positively charged clefts that may be sites for the cleavage of mRNAs of Leishmania cells. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative mRNA cleavage site. Such inhibitors may be used as treatments for mucocutaneous leishmaniasis.
In mammals, a single Dicer participates in biogenesis of small RNAs in microRNA (miRNA) and RNAi pathways. In mice, endogenous RNAi is highly active in oocytes, but not in somatic cells, which we ascribe here to an oocyte-specific Dicer isoform (Dicer(O)). Dicer(O) lacks the N-terminal DExD helicase domain and has higher cleavage activity than the full-length Dicer in somatic cells (Dicer(S)). Unlike Dicer(S), Dicer(O) efficiently produces small RNAs from long double-stranded (dsRNA) substrates. Expression of the Dicer(O) isoform is driven by an intronic MT-C retrotransposon promoter, deletion of which causes loss of Dicer(O) and female sterility. Oocytes from females lacking the MT-C element show meiotic spindle defects and increased levels of endogenous small interfering RNA (endo-siRNA) targets, phenocopying the maternal Dicer null phenotype. The alternative Dicer isoform, whose phylogenetic origin demonstrates evolutionary plasticity of RNA-silencing pathways, is the main determinant of endogenous RNAi activity in the mouse female germline.
- MeSH
- DEAD-box RNA Helicases chemistry genetics metabolism MeSH
- Gene Expression MeSH
- Phylogeny MeSH
- RNA, Small Interfering chemistry metabolism MeSH
- Molecular Sequence Data MeSH
- Mice MeSH
- Oocytes metabolism MeSH
- Promoter Regions, Genetic MeSH
- Protein Isoforms chemistry genetics metabolism MeSH
- Retroelements * MeSH
- Ribonuclease III chemistry genetics metabolism MeSH
- Base Sequence MeSH
- Infertility, Female MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH