Tricalcium phosphate
Dotaz
Zobrazit nápovědu
To test the hypothesis that the application of tricalcium phosphate (TCP) mixed with autologous bone marrow can achieve better and faster healing of benign bone lesions than the application of tricalcium phosphate granules alone. MATERIAL AND METHODS: The prospective study included two groups, each consisting of 10 patients, treated for benign cystic bone lesions at the Department of Paediatric Surgery, Orthopaedics and Trauma Surgery from July 1, 2008 to June 30, 2010. The bone cysts involved non-ossifying fibroma, enchodroma, fibrous dysplasia, aneurysmal bone cyst and juvenile bone cyst. One group was treated using ChronOS(TM) Beta-Tricalcium Phosphate (Synthes GmbH, Switzerland) granules mixed with autologous bone marrow harvested during surgery (BM group). The other (CH group) received treatment with ChronOS granules alone. Relevant clinical data were obtained from all 20 patients treated for one of the bone cyst forms mentioned above. The patients were followed up till the end of 2010. RESULTS: TCP application was a one-step procedure in both groups. In the BM group, bone regeneration ad integrum (Neer 1) was achieved, with only an occasional very small residue of the cyst seen on radiographs (Neer 2). None of the patients reported any problems, not even at 6 months after surgery. In the CH group, two patients required further surgical treatment because of insufficient bone healing (Neer 3) and two other patients reported pain persisting at the site of the lesion at 6 months post-operatively. In these patients TCP was used to fill a defect after excochleation of an aneurysmal bone cyst or fibrous dysplasia. The rest of the patients showed satisfactory healing. DISCUSSION: The main objective of the use of synthetic biocompatible materials in surgical treatment of benign bone cysts requiring filling of the lesion is to reduce the post-operative stress of paediatric patients as much as possible. Although our first results were not statistically significant to give unambiguous support to our hypothesis that lesions would heal better with the use of synthetic tricalcium phosphate mixed with autologous bone marrow, there is plenty of evidence that further development of cell technologies will result in a more exact definition of bone substitute materials in both their components, i.e., well-defined cells and non-biological scaffolds close in structure to inorganic compounds of bone, i.e., biodegradable osteoinductive materials. CONCLUSIONS: The patients with benign bone lesions treated by TCP mixed with autologous bone marrow showed neither recurrent disease nor complications. The group treated with TCP alone had recurrent lesions in two and persisting pain also in two patients. Other complications were not recorded.
- MeSH
- autologní transplantace MeSH
- dítě MeSH
- financování organizované MeSH
- fosfáty terapeutické užití MeSH
- interpretace statistických dat MeSH
- kostní cysty chirurgie MeSH
- kostní náhrady terapeutické užití MeSH
- lidé MeSH
- prospektivní studie MeSH
- statistika jako téma MeSH
- transplantace kostní dřeně MeSH
- výsledek terapie MeSH
- výsledky a postupy - zhodnocení (zdravotní péče) MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
CÍL: Kostní defekty jsou problematikou zejména traumatologie, ortopedie a onkologie. Tradiční metodou léčby je autospongioplastika, v popředí zájmu je dnes použití resorbovatelných materiálů s osteoindukčními vlastnostmi (trikalciumfosfát - ChronOS). Cílem předkládané studie je ověření použití samotného trikalciumfosfátu v léčbě velkého diafyzárního defektu na modelu miniaturního prasete. Pozitivní výsledek by mohl omezit nutnost provádění spongioplastiky a zjednodušit celý proces léčby. Získané výsledky budou také sloužit jako technologická východiska pro studium možnosti náhrady kostních defektů mezenchymovými kmenovými buňkami. MATERIÁL A METODIKA: Experimentální skupinu tvořilo 25 miniaturních prasat z certifikovaného chovu Ústavu živočišné fyziologie a genetiky Akademie věd. U 12 prasat byl použit k náhradě defektu Trikaciumfosfát a u 13 prasat autogenní spongiózní štěp. Do vytvořeného diafyzárního defektu byl vložen Trikalciufosfát či autoštěp a zafixován. V obou skupinách byla fixace provedena LCP dlahou a intramedulárně Kirschnerovým drátem. Po zhojení byla tato oblast histologicky zpracována a hodnocena stran tvorby nové kostní tkáně a přihojení k původní kosti v místě okrajů defektu. VÝSLEDKY: Z výsledků vyplývá, že ve skupině s použitím autoštěpů došlu k výraznější novotvorbě zralé kostní tkáně. Při hodnocení okrajů defektu stran přihojení k původní kosti byly výsledky u skupiny s autoštěpem výrazně lepší. ZÁVĚR: Očekávané osteoindukční vlastnosti samotného trikalciumfosfátu se u rozsáhlého defektu diafýzy stehenní kosti v provedeném experimentu nepotvrdily. Náhradu autospongioplastiky jinou neinvazivní metodou v léčbě velkých kostních defektů je třeba nadále experimentálně hledat. Východiskem může být použitá operační metodika a využití vhodného biologického nosiče poskytujícího mechanickou oporu v kombinaci s trikalciumfosfátem nebo mezenchymovými kmenovými buňkami.
AIM: Bone defects are, in particular, the problematics of traumatology, orthopedics and oncology. The traditional method of treatment is autospongioplastics, nowadays the use of absorbable materials with osteoinductive properties (tricalcium phosphate - ChronOS)1,2 is in the forefront. The aim of the submitted study is to verify the application of tricalcium phosphate itself as a treatment of a large diaphyseal bone defect in a model of a miniature pig. A positive result could reduce the necessity of bonegrafting and thus simplify the whole process of treatment. The results obtained will serve as technological starting points for further studies regarding the possibility of replacement of bone defects by mesenchymal stem cells. MATERIALS AND METHODS: The experimental group was made up of 25 miniature pigs from the certified breeding of the Institute of Animal Physiology and Genetics Academy of Sciences. In 12 pigs the tricalcium phosphate as a replacement of the defect was used and in 13 pigs autogennous cancellous graft was used. The tricalcium phosphate, or autograft, was applied and fixed into the diaphyseal bone defect, which was formed. In both groups the fixation was carried out by means of LCP and application of intramedullary Kirschner wire. After healing, this area was processed from the histological point of view and evaluated with respect to the new formation of bone tissue and engraftment to the original bone, in the area of the edges of the defect. RESULTS: The results demonstrate that in the group with the application of autografts, more distinctive new formation of the mature bone tissue occurred. While evaluating the edges of the defect with regard to the engraftment to the original bone, the results in the group with the application of autograft were distinctively better. CONCLUSION: In the experiment conducted, the expected osteoinductive properties of the tricalcium phosphate itself have not been confirmed for the extensive defect of the femoral diaphysis. It is necessary to go on searching for the replacement of autospongioplastics by another noninvasive method for the treatment of extensive bone defects, by means of conducting experiments. The starting point might be the applied surgery method and the use of an appropriate biological carrier that will provide a mechanical support in combination with the tricalcium phosphate or mesenchymal stem cells.
This prospective study sought to evaluate the healing quality of implanted ultraporous β-tricalcium phosphate sown with expanded autologous mesenchymal stromal cells (MSCs) into femoral defects during revision hip arthroplasty. A total of 37 osseous defects in 37 patients were treated and evaluated concerning bone regeneration. Nineteen subjects received β-tricalcium phosphate graft material serving as a carrier of expanded autologous MSCs (the trial group A), nine subjects received β-tricalcium phosphate graft material only (the study group B) and nine subjects received cancellous allografts only (the control group C). Clinical and radiographic evaluations were scheduled at 6 weeks, 3, 6, and 12 months post-operatively, and performed at the most recent visit as well. All observed complications were recorded during follow-up to assess the use of an ultraporous β-tricalcium phosphate synthetic graft material combined with expanded MSCs in bone defect repair. The resulting data from participants with accomplished follow-up were processed and statistically evaluated with a Freeman-Halton modification of the Fischer's exact test, a P < 0.05 value was considered to be significant. Whereas no significant difference was observed between the trial group A with β-tricalcium phosphate synthetic graft material serving as a carrier of expanded autologous MSCs and control group C with cancellous impaction allografting in terms of the bone defect healing, significant differences were documented between the study group B with β-tricalcium phosphate graft material only and control group C. Regarding adverse effects, six serious events were recorded during the clinical trial with no causal relationship to the cell product. β-tricalcium phosphate synthetic graft material serving as a carrier of expanded autologous MSCs appears safe and promotes the healing of bone defects in a jeopardized and/or impaired microenvironment. This clinical trial was registered at the EU Clinical Trials Register before patient recruitment (Registration number: EudraCT number 2012-005599-33; Date of registration: 2013-02-04).
- MeSH
- dospělí MeSH
- femur cytologie zranění fyziologie chirurgie MeSH
- fosforečnany vápenaté chemie terapeutické užití MeSH
- kostní náhrady chemie terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie MeSH
- regenerace kostí * MeSH
- senioři MeSH
- tkáňové podpůrné struktury chemie MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze II MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
PURPOSE OF THE STUDY: The preclinical study aimed to compare the healing of segmental bone defects treated with biodegradable hyaluronic acid and tricalcium phosphate-based hydrogel with the established autologous spongioplasty. Another aim was to evaluate the hydrogel as a scaffold for osteoinductive growth factor of bone morphogenetic protein-2 (BMP-2) and stem cells. MATERIAL AND METHODS: The study was conducted in an in vivo animal model. A standardized rabbit model of a 15 mm long segmental bone defect of left radius was used. A total of 40 animals were divided into 5 groups of 8 individuals. In the KO- (negative control) group, the created defect was left to heal spontaneously. In the KO+ (positive control) group, the defect was filled with morselized bone autograft prepared from the resected segment. In the study group A, the defect was filled with hydrogel based on hyaluronic acid derivative and tricalcium phosphate. In the study group B, the defect was filled with hydrogel based on hyaluronic acid derivative, tricalcium phosphate and bone marrow aspirate. In the study group C, the defect was filled with hydrogel based on hyaluronic acid derivative, tricalcium phosphate, bone marrow aspirate and BMP-2. Healing was assessed using radiographs at 1, 6, and 12 weeks postoperatively and histology specimens were collected at 16 weeks postoperatively. RESULTS: Altogether 35 rabbits survived (KO- 7, KO+ 7, A 7, B 6, C 8) until the end of the study. As concerns the radiographic assessment, the best results were achieved by the groups KO+ and C, where new bone formation across the entire width of the bone defect was clearly seen at 6 and 12 weeks and the osteotomy line was completely healed too. At 12 weeks, complete bone remodelling was observed in all animals in the group KO+, whereas in the group C, bone remodelling was fully completed in 5 animals and partially completed in 3 animals. In terms of histological assessment, however, the best results were achieved by the group C, where the bone defect was completely remodelled into lamellar bone in 7 specimens, while in 1 specimen it healed with bony callus formation. In the group KO+, the defect was healed in 4 specimens by cartilaginous callus with loci of remodelling into bony callus, in 2 specimens the bony callus was predominant with cartilaginous callus areas, and only one defect was completely remodelled into lamellar bone. DISCUSSION: Compared to autografts that manifest osteogenic, osteoinductive and osteoconductive properties, the biodegradable hyaluronic acid and tricalcium phosphate-based hydrogel has osteoconductive properties only. Thus, it was also tested in our study as a scaffold for bone marrow cells and BMP-2 osteoinductive growth factor. Thanks to its semi-liquid properties, the biodegradable hyaluronic acid and tricalcium phosphate-based hydrogel is a promising material for use in 3D printing. CONCLUSIONS: The preclinical study in an in vivo animal model confirmed the beneficial effect of the biodegradable hyaluronic acid and tricalcium phosphate-based hydrogel on the healing of critical-size segmental bone defects. Better healing of these defects was also confirmed for filling composed of hydrogel and BMP-2 osteoinductive growth factor. The benefit of bone marrow aspirate mixed with hydrogel was not confirmed. KEY WORDS: bone defect, non-union, rabbit, hyaluronic acid, calcium phosphate, stem cells, BMP-2, scaffold, bone healing, spongioplasty.
- MeSH
- fosforečnany vápenaté * farmakologie MeSH
- hydrogely farmakologie MeSH
- kostní morfogenetický protein 2 * MeSH
- králíci MeSH
- kyselina hyaluronová * farmakologie MeSH
- modely nemocí na zvířatech MeSH
- radius chirurgie zranění MeSH
- regenerace kostí účinky léků MeSH
- tkáňové podpůrné struktury * MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- anglický abstrakt MeSH
- časopisecké články MeSH
Due to unique osteogenic properties, tricalcium phosphate (TCP) has gained relevance in the field of bone repair. The development of novel and rapid sintering routes is of particular interest since TCP undergoes to high-temperature phase transitions and is widely employed in osteoconductive coatings on thermally-sensitive metal substrates. In the present work, TCP bioceramics was innovatively obtained by Ultrafast High-temperature Sintering (UHS). Ca-deficient hydroxyapatite nano-powder produced by mechanochemical synthesis of mussel shell-derived calcium carbonate was used to prepare the green samples by uniaxial pressing. These were introduced within a graphite felt which was rapidly heated by an electrical current flow, reaching heating rates exceeding 1200 °C min-1. Dense (> 93%) ceramics were manufactured in less than 3 min using currents between 25 and 30 A. Both β and α-TCP were detected in the sintered components with proportions depending on the applied current. Preliminary tests confirmed that the artifacts do not possess cytotoxic effects and possess mechanical properties similar to conventionally sintered materials. The overall results prove the applicability of UHS to bioceramics paving the way to new rapid processing routes for biomedical components.
The purpose of this prospective controlled study was to compare healing quality following the implantation of ultraporous β-tricalcium phosphate, containing either expanded autologous mesenchymal stromal cells (trial group, 9 patients) or β-tricalcium phosphate alone (control group, 9 patients), into femoral defects during revision total hip arthroplasty. Both groups were assessed using the Harris Hip Score, radiography, and DEXA scanning at 6 weeks and 3, 6, and 12 months postoperatively. A significant difference in the bone defect healing was observed between both groups of patients (P < 0.05). In the trial group, trabecular remodeling was found in all nine patients and in the control group, in 1 patient only. Whereas, over the 12-month follow-up period, no significant difference was observed between both groups of patients in terms of the resorption of β-tricalcium phosphate, the significant differences were documented in the presence of radiolucency and bone trabeculation through the defect (P < 0.05). Using autologous mesenchymal stromal cells combined with a β-tricalcium phosphate scaffold is a feasible, safe, and effective approach for management of bone defects with compromised microenvironment. The clinical trial was registered at the EU Clinical Trials Register before patient recruitment has begun (EudraCT number 2012-005599-33).
- MeSH
- autologní transplantace * MeSH
- femur patofyziologie chirurgie MeSH
- fosforečnany vápenaté terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- mezenchymální kmenové buňky MeSH
- náhrada kyčelního kloubu * MeSH
- regenerace kostí fyziologie MeSH
- remodelace kosti účinky léků fyziologie MeSH
- senioři MeSH
- tkáňové podpůrné struktury chemie MeSH
- trabekulární kostní tkáň účinky léků patofyziologie chirurgie MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze II MeSH
PURPOSE: To compare the efficacy of 2 common materials in sinus augmentation surgery and to assess their contribution when enriched with autogenous bone. MATERIALS AND METHODS: The prospective human study was performed in 48 sinus grafting operations using beta-tricalcium phosphate or deproteinized bovine bone (pure or mixed with 10% to 20% autogenous bone) or autogenous bone. Biopsy specimens were taken after 9 months. Statistical evaluation was done with a 2-sample t test (P < .05). RESULTS: When autogenous bone was used, 49.2% +/- 3.1% of new bone was found, which is significantly higher than in all the other groups. A higher proportion (34.2% +/- 13.1%) of the new vital bone was found in the deproteinized bovine bone group, in comparison with the beta-tricalcium phosphate group (21.4% +/- 8.1%) and the beta-tricalcium phosphate composite graft group (24.0% +/- 6.6%; P < .05). No significant differences between single-component grafts and corresponding composite grafts were established. CONCLUSIONS: Sinus augmentation with the aforementioned augmentation materials is a well-accepted procedure. However, autogenous bone alone was the best material. More new bone was found using deproteinized bovine bone than beta-tricalcium phosphate. The addition of 10% to 20% autogenous bone to the bone substitute did not significantly influence the new bone formation.
- MeSH
- dospělí MeSH
- financování organizované MeSH
- fosforečnany vápenaté MeSH
- kostní náhrady MeSH
- lidé středního věku MeSH
- lidé MeSH
- minerály MeSH
- průřezové studie MeSH
- regenerace kostí MeSH
- senioři MeSH
- sinus maxillaris chirurgie MeSH
- skot MeSH
- stomatochirurgické předprotetické výkony metody MeSH
- transplantace kostí MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- klinické zkoušky kontrolované MeSH
- srovnávací studie MeSH
The present work studies the microstructure and mechanical performance of tricalcium phosphate (TCP) based cermet toughened by iron particles. A novelty arises by the employment of spark plasma sintering for fabrication of the cermet. Results showed partial transformation of initial alpha TCP matrix to beta phase and the absence of oxidation of iron particles, as well as a lack of chemical reaction between TCP and iron components during sintering. The values of compressive and tensile strength of TCP/Fe cermet were 3.2 and 2.5 times, respectively, greater than those of monolithic TCP. Fracture analysis revealed the simultaneous action of crack-bridging and crack-deflection microstructural toughening mechanisms under compression. In contrast, under tension the reinforcing mechanism was only crack-bridging, being the reason for smaller increment of strength. Elastic properties of the cermet better matched values reported for human cortical bone. Thereby the new TCP/Fe cermet has potential for eventual use as a material for bone fractures fixation under load-bearing conditions.
This report describes the histological characteristics of large human bone defects that were implanted with β-tricalcium phosphate (β-TCP). Samples were obtained longer after the primary operation than in the earlier studies. We assessed a total of nine biopsies taken 33-208 weeks after implantation. The tissue sections were stained with hematoxylin-eosin for general observation, with Gomori stain to visualize the reticulin fibers, and with an antibody against tartrate-resistant alkaline phosphatase (TRAP) to characterize the cells. Ongoing bone remodeling was observed even 208 weeks after implantation as determined by the presence of osteoclasts and active osteoblasts and new woven and lamellar bone. We observed multinuclear giant cells phagocytosing the biomaterial and the attachment of osteoclasts to the β-TCP. The osteoclasts showed intense TRAP positivity, while the giant cells showed variable TRAP positivity. There was a zonal pattern in the original defects: The central regions showed granules and fibrous septa, while peripheral areas showed a layer of new bone formation. These data demonstrate ongoing bone remodeling long after implantation in the peripheral regions of the original defects as well as fibrous changes in the central regions and phagocytosis of biomaterial by multinuclear giant cells.
- MeSH
- biopsie MeSH
- dítě MeSH
- dospělí MeSH
- fosforečnany vápenaté terapeutické užití MeSH
- kosti a kostní tkáň patologie MeSH
- kostní náhrady terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nemoci kostí patologie terapie MeSH
- osteoblasty patologie MeSH
- osteoklasty patologie MeSH
- remodelace kosti MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH