classification and regression tree
Dotaz
Zobrazit nápovědu
The increasing prevalence of autism spectrum disorders (ASD) has led to worldwide interest in factors influencing the age of ASD diagnosis. Parents or caregivers of 237 ASD children (193 boys, 44 girls) diagnosed using the Autism Diagnostic Observation Schedule (ADOS) completed a simple descriptive questionnaire. The data were analyzed using the variable-centered multiple regression analysis and the person-centered classification tree method. We believed that the concurrent use of these two methods could produce robust results. The mean age at diagnosis was 5.8 ± 2.2 years (median 5.3 years). Younger ages for ASD diagnosis were predicted (using multiple regression analysis) by higher scores in the ADOS social domain, higher scores in ADOS restrictive and repetitive behaviors and interest domain, higher maternal education, and the shared household of parents. Using the classification tree method, the subgroup with the lowest mean age at diagnosis were children, in whom the summation of ADOS communication and social domain scores was ≥ 17, and paternal age at the delivery was ≥ 29 years. In contrast, the subgroup with the oldest mean age at diagnosis included children with summed ADOS communication and social domain scores < 17 and maternal education at the elementary school level. The severity of autism and maternal education played a significant role in both types of data analysis focused on age at diagnosis.
- MeSH
- autistická porucha * MeSH
- dítě MeSH
- dospělí MeSH
- komunikace MeSH
- lidé MeSH
- pervazivní vývojové poruchy u dětí * MeSH
- poruchy autistického spektra * diagnóza epidemiologie MeSH
- předškolní dítě MeSH
- regresní analýza MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- dusík močoviny v krvi MeSH
- finanční podpora výzkumu jako téma MeSH
- hodnocení rizik metody statistika a číselné údaje využití MeSH
- hospitalizovaní pacienti klasifikace statistika a číselné údaje MeSH
- kreatinin diagnostické užití MeSH
- lidé MeSH
- měření krevního tlaku metody statistika a číselné údaje využití MeSH
- metody pro podporu rozhodování MeSH
- mortalita v nemocnicích MeSH
- srdeční selhání mortalita MeSH
- Check Tag
- lidé MeSH
PURPOSE: The purposes of this study are to identify the strongest clinical parameters in relation to in-hospital mortality, which are available in the earliest phase of the hospitalization of patients, and to create an easy tool for the early identification of patients at risk. MATERIALS AND METHODS: The classification and regression tree analysis was applied to data from the Acute Heart Failure Database-Main registry comprising patients admitted to specialized cardiology centers with all syndromes of acute heart failure. The classification model was built on derivation cohort (n = 2543) and evaluated on validation cohort (n = 1387). RESULTS: The classification tree stratifies patients according to the presence of cardiogenic shock (CS), the level of creatinine, and the systolic blood pressure (SBP) at admission into the 5 risk groups with in-hospital mortality ranging from 2.8% to 66.2%. Patients without CS and creatinine level of 155 μmol/L or less were classified into very-low-risk group; patients without CS, creatinine level greater than 155 μmol/L, and SBP greater than 103 mm Hg, into low-risk group, whereas patients without CS, creatinine level greater than 155 μmol/L, and SBP of 103 mm Hg or lower, into intermediate-risk group. The high-risk group patients had CS and creatinine of 140 μmol/L or less; patients with CS and creatinine level greater than 140 μmol/L belong to very-high-risk group. The area under receiver operating characteristic curve was 0.823 and 0.832, and the value of Brier's score was estimated on level 0.091 and 0.084, for the derivation and the validation cohort, respectively. CONCLUSIONS: The presented classification model effectively stratified patients with all syndromes of acute heart failure into in-hospital mortality risk groups and might be of advantage for clinical practice.
- MeSH
- hodnocení rizik metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mortalita v nemocnicích * MeSH
- registrace MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- srdeční selhání klasifikace mortalita MeSH
- statistické modely * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The increasing trend of adolescents' emotional symptoms has become a global public health problem. Especially, adolescents with chronic diseases or disabilities face more risks of emotional problems. Ample evidence showed family environment associates with adolescents' emotional health. However, the categories of family-related factors that most strongly influence adolescents' emotional health remained unclear. Additionally, it was not known that whether family environment influences emotional health differently between normally developed adolescents and those with chronic condition(s). Health Behaviours in School-aged Children (HBSC) database provides mass data about adolescents' self-reported health and social environmental backgrounds, which offers opportunities to apply data-driven approaches to determine critical family environmental factors that influence adolescents' health. Thus, based on the national HBSC data in the Czech Republic collected from 2017 to 2018, the current study adopted a data-driven method, classification-regression-decision-tree analysis, to investigate the impacts of family environmental factors, including demographic factors and psycho-social factors on adolescents' emotional health. The results suggested that family psycho-social functions played a significant role in maintaining adolescents' emotional health. Both normally developed adolescents and chronic-condition(s) adolescents benefited from communication with parents, family support, and parental monitoring. Besides, for adolescents with chronic condition(s), school-related parental support was also meaningful for decreasing emotional problems. In conclusion, the findings suggest the necessity of interventions to strengthen family-school communication and cooperation to improve chronic-disease adolescents' mental health. The interventions aiming to improve parent-adolescent communication, parental monitoring, and family support are essential for all adolescents.
- MeSH
- chronická nemoc MeSH
- dítě MeSH
- duševní zdraví * MeSH
- emoce MeSH
- lidé MeSH
- mladiství MeSH
- rodiče * psychologie MeSH
- rozhodovací stromy MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
... 13 -- 2.1 Objects 13 -- 2.2 Connections 20 -- 2.3 Data Manipulation 27 -- 2.4 Tables and Cross-Classification ... ... - 6.1 An Analysis of Covariance Example 139 -- 6.2 Model Formulae and Model Matrices 144 -- 6.3 Regression ... ... 238 -- 8.10 Neural Networks 243 -- 8.11 Conclusions 249 -- 9 Tree-Based Methods 251 -- 9.1 Partitioning ... ... Methods 253 -- 9.2 Implementation in rpart 258 -- 9.3 Implementation in tree 266 -- 10 Random and Mixed ... ... 331 -- 12.1 Discriminant Analysis 331 -- 12.2 Classification Theory 338 -- 12.3 Non-Parametric Rules ...
Statistics and computing
4th ed. xi, 495 s. : il.
... Watts, of Nonlinear Regression Analysis and Its Applications, a Fellow of the American Statistical Association ... ... formulation 328 -- 7.4.2 Estimation and Computational Methods 329 -- 7.5 An Extended Nonlinear Regression ... ... Protein 433 -- A. 12 Indometh—Indomethicin Kinetics 433 -- A. 13 Loblolly—Growth of Loblolly Pine Trees ... ... 435 -- A. 15 Oats—Split-plot Experiment on Varieties of Oats 435 -- A. 16 Orange—Growth of Orange Trees ... ... Regression Model 511 -- C.1.1 Starting Estimates for SSasymp 511 -- C.2 SSasympOff—Asymptotic Regression ...
Statistics and computing
528 s.
BACKGROUND: Overcoming boundaries is crucial for incursion of alien plant species and their successful naturalization and invasion within protected areas. Previous work showed that in Kruger National Park, South Africa, this process can be quantified and that factors determining the incursion of invasive species can be identified and predicted confidently. Here we explore the similarity between determinants of incursions identified by the general model based on a multispecies assemblage, and those identified by species-specific models. We analyzed the presence and absence of six invasive plant species in 1.0×1.5 km segments along the border of the park as a function of environmental characteristics from outside and inside the KNP boundary, using two data-mining techniques: classification trees and random forests. PRINCIPAL FINDINGS: The occurrence of Ageratum houstonianum, Chromolaena odorata, Xanthium strumarium, Argemone ochroleuca, Opuntia stricta and Lantana camara can be reliably predicted based on landscape characteristics identified by the general multispecies model, namely water runoff from surrounding watersheds and road density in a 10 km radius. The presence of main rivers and species-specific combinations of vegetation types are reliable predictors from inside the park. CONCLUSIONS: The predictors from the outside and inside of the park are complementary, and are approximately equally reliable for explaining the presence/absence of current invaders; those from the inside are, however, more reliable for predicting future invasions. Landscape characteristics determined as crucial predictors from outside the KNP serve as guidelines for management to enact proactive interventions to manipulate landscape features near the KNP to prevent further incursions. Predictors from the inside the KNP can be used reliably to identify high-risk areas to improve the cost-effectiveness of management, to locate invasive plants and target them for eradication.
- MeSH
- druhová specificita MeSH
- regresní analýza MeSH
- řeky MeSH
- rostliny klasifikace MeSH
- vývoj rostlin MeSH
- zachování přírodních zdrojů MeSH
- zavlečené druhy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Jihoafrická republika MeSH
In this paper, we present the results of the research concerning extraction of informative gene expression profiles from high-dimensional array of gene expressions considering the state of patients' health using clustering method, ML-based binary classifiers and fuzzy inference system. Applying of the proposed stepwise procedure can allow us to extract the most informative genes taking into account both the subtypes of disease or state of the patient's health for further reconstruction of gene regulatory networks based on the allocated genes and following simulation of the reconstructed models. We used the publicly available gene expressions data as the experimental ones which were obtained using DNA microarray experiments and contained two types of patients' gene expression profiles-the patients with lung cancer tumor and healthy patients. The stepwise procedure of the data processing assumes the following steps-in the beginning, we reduce the number of genes by removing non-informative genes in terms of statistical criteria and Shannon entropy; then, we perform the stepwise hierarchical clustering of gene expression profiles at hierarchical levels from 1 to 10 using the SOTA (Self-Organizing Tree Algorithm) clustering algorithm with correlation distance metric. The quality of the obtained clustering was evaluated using the complex clustering quality criterion which is considered both the gene expression profiles distribution relative to center of the clusters where these gene expression profiles are allocated and the centers of the clusters distribution. The result of this stage execution was a selection of the optimal cluster at each of the hierarchical levels which corresponded to the minimum value of the quality criterion. At the next step, we have implemented a classification procedure of the examined objects using four well known binary classifiers-logistic regression, support-vector machine, decision trees and random forest classifier. The effectiveness of the appropriate technique was evaluated based on the use of ROC (Receiver Operating Characteristic) analysis using criteria, included as the components, the errors of both the first and the second kinds. The final decision concerning the extraction of the most informative subset of gene expression profiles was taken based on the use of the fuzzy inference system, the inputs of which are the results of the appropriate single classifiers operation and the output is the final solution concerning state of the patient's health. To our mind, the implementation of the proposed stepwise procedure of the informative gene expression profiles extraction create the conditions for the increasing effectiveness of the further procedure of gene regulatory networks reconstruction and the following simulation of the reconstructed models considering the subtypes of the disease and/or state of the patient's health.
- Publikační typ
- časopisecké články MeSH
V práci autor předkládá hypotézy, podle nichž mají pocity životního štěstí a spokojenosti zpětné vlivy na percepci a hodnocení objektivních podmínek života. Pro výklad těchto účinků na percepci objektivních podmínek předkládá hypotézu kognitivní konzistence (halo efektu), pro výklad účinků kvality života na interpretaci a hodnocení vstupních informací předkládá autor hypotézu kauzálních atribucí. Podle první hypotézy je při percepci podmínek života ve hře jev podobný halo efektu. Ten vede k tomu, že šťastní lidé nahlíží řadu podmínek svého života v lepším světle než lidé nešťastní. Podle druhé hypotézy používáme odlišná kauzální schémata pro výklad nespokojenosti a spokojenosti se životem. Tyto hypotézy – především hypotézu týkající se účinku kauzálních atribucí – autor specifikoval zvlášť pro úroveň jedinců a států a testoval na datech ze tří šetření ESS (z let 2002, 2004 a 2006). Zaměřil se na účinky vzdělání, zdraví a politicko-ekonomické situace státu. Tyto tři faktory mají na pocity životního štěstí a spokojenosti významné nezávislé vlivy. Jejich účinky jsou však současně moderovány kvalitou života. U jedinců, kteří jsou v rámci státu nadprůměrně šťastní a spokojení se svými životy, neexistují téměř žádné souvislosti mezi jejich pocity životního štěstí a jejich vzděláním, subjektivním zdravím a spokojeností s politicko-ekonomickou situací. Avšak u jedinců, kteří jsou v rámci státu relativně nešťastní a jsou se svými životy nespokojení, existují mezi těmito proměnnými velmi silné souvislosti. Na úrovni států se analogicky ukázalo, že čím jsou v určitém státě jedinci v průměru šťastnější a spokojenější, tím nižší jsou v tomto státě souvislosti (korelace) mezi těmito třemi proměnnými a kvalitou života.
- MeSH
- dospělí MeSH
- kvalita života psychologie MeSH
- lidé MeSH
- mladiství MeSH
- osobní uspokojení MeSH
- politické systémy MeSH
- psychologické modely MeSH
- regresní analýza MeSH
- statistika jako téma MeSH
- stupeň vzdělání MeSH
- věkové faktory MeSH
- výzkum statistika a číselné údaje MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- grafy a diagramy MeSH
- Geografické názvy
- Evropa MeSH
McGraw-Hill series in probability and statistics
2nd ed. XVI, 526 s. : il. ; 24 cm