In this work, we present the synthesis and evaluation of magnetic resonance (MR) properties of novel phosphorus/iron-containing probes for dual 31P and 1H MR imaging and spectroscopy (MRI and MRS). The presented probes are composed of biocompatible semitelechelic and multivalent phospho-polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) coordinated with small paramagnetic Fe3+ ions or superparamagnetic maghemite (γ-Fe2O3) nanoparticles via deferoxamine group linked to the end or along the polymer chains. All probes provided very short 1H T1 and T2 relaxation times even at low iron concentrations. The presence of iron had a significant impact on the shortening of 31P relaxation, with the effect being more pronounced for probes based on γ-Fe2O3 and multivalent polymer. While the water-soluble probe having one Fe3+ ion per polymer chain was satisfactorily visualized by both 31P-MRS and 31P-MRI, the probe with multiple Fe3+ ions could only be detected by 31P-MRS, and the probes consisting of γ-Fe2O3 nanoparticles could not be imaged by either technique due to their ultra-short 31P relaxations. In this proof-of-principle study performed on phantoms at a clinically relevant magnetic fields, we demonstrated how the different forms and concentrations of iron affect both the 1H MR signal of the surrounding water molecules and the 31P MR signal of the phospho-polymer probe. Thus, this double contrast can be exploited to simultaneously visualize body anatomy and monitor probe biodistribution.
Investigating the driving forces leading to the formation of a specific supramolecular architecture among a wide spectrum of all the possibly obtainable structures is not an easy task. The contemporary literature provides several models for correctly predicting the thermodynamically accessible structures that can originate from a library of building blocks. Definitions are rigid by their very nature, so their application may sometimes require a shift in perspective. In the study presented herein, we describe the crystal structures of three metallo-supramolecular architectures assembled from deprotonated derivatives of 3,6,9-trioxaundecanedioic acid and Mn(II), Co(II) and Zn(II). In the Mn(II) case, the complexation resulted in a complex of a discrete/heptacoordinated nature, whereas the other two structures appeared as helical polymers. To explain such an anomaly, in this work, we describe how the interplay between the flexibility of the ligand spacer and the number of coordinating atoms involved determines the divergent or convergent organisation of the final coordination architecture.
- Publication type
- Journal Article MeSH
Intestinal milieu disorders are strongly related to the occurrence of inflammatory bowel diseases (IBDs), which results from mucosa destruction, epithelium disruption, and tight junction (TJ) proteins loss. Excess of H2 S in the intestinal milieu produced by the sulfate-reducing bacteria metabolism contributes to development of IBDs via epithelial barrier breakdown. Conventional interventions, such as surgery and anti-inflammatory medications, are considered not completely effective because of frequent recurrence and other complications. Herein, a novel oral delivery system, a hydroxypropyl methylcellulose acetate succinate (HPMCAS)-based polymer-coated Zr-based metal-organic framework (UiO-66) with a Cux -rhodamine B (CR) probe (hereinafter referred to as HUR), is produced via a co-flow microfluidic approach with the ability to reduce H2 S levels, thus restoring the intestinal lumen milieu. HPMCAS serves as an enteric coating that exposes UiO-66@CR at the pH of the intestine but not the acidic pH of the stomach. The synthesized HUR exhibits notable therapeutic efficacy, including mucosa recovery, epithelium integrity restoration, and TJ proteins upregulation via H2 S scavenging to protect against intestinal barrier damage and microbiome dysbiosis. Thus, HUR is verified to be a promising theranostic platform able to decrease the H2 S content for intestinal milieu disorder treatment. The presented study therefore opens the door for further exploitation for IBDs therapy.
These days, explorations have focused on designing two-dimensional (2D) nanomaterials with useful (photo)catalytic and environmental applications. Among them, MXene-based composites have garnered great attention owing to their unique optical, mechanical, thermal, chemical, and electronic properties. Various MXene-based photocatalysts have been inventively constructed for a variety of photocatalytic applications ranging from pollutant degradation to hydrogen evolution. They can be applied as co-catalysts in combination with assorted common photocatalysts such as metal sulfide, metal oxides, metal-organic frameworks, graphene, and graphitic carbon nitride to enhance the function of photocatalytic removal of organic/pharmaceutical pollutants, nitrogen fixation, photocatalytic hydrogen evolution, and carbon dioxide conversion, among others. High electrical conductivity, robust photothermal effects, large surface area, hydrophilicity, and abundant surface functional groups of MXenes render them as attractive candidates for photocatalytic removal of pollutants as well as improvement of photocatalytic performance of semiconductor catalysts. Herein, the most recent developments in photocatalytic degradation of organic and pharmaceutical pollutants using MXene-based composites are deliberated, with a focus on important challenges and future perspectives; techniques for fabrication of these photocatalysts are also covered.
Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.
- MeSH
- Hep G2 Cells MeSH
- PC12 Cells MeSH
- COVID-19 diagnosis MeSH
- CRISPR-Cas Systems MeSH
- Nitrogen chemistry MeSH
- RNA, Guide, Kinetoplastida MeSH
- HEK293 Cells MeSH
- HeLa Cells MeSH
- DNA, Single-Stranded MeSH
- Rats MeSH
- Humans MeSH
- Limit of Detection MeSH
- Nanocomposites MeSH
- Nanostructures MeSH
- Metal-Organic Frameworks chemistry MeSH
- Porosity MeSH
- Porphyrins chemistry MeSH
- Surface Properties MeSH
- RNA, Viral metabolism MeSH
- SARS-CoV-2 MeSH
- Sensitivity and Specificity MeSH
- COVID-19 Testing MeSH
- Hydrogen Bonding MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
A novel approach for the assembly of Sn-based metal organic framework (Sn-MOF) via solvothermal method and its composite (Sn-MOF@CNT) with electroactive material, carbon nanotubes (CNT) by sonochemical means, is described that is useful for hydrogen peroxide sensing; large surface area and pore volume of Sn-MOF were exploited where in the crystallinity of the Sn-MOF was preserved upon inclusion of CNT over its surface. The surface morphology and structural analysis of Sn-MOF and its composite form, Sn-MOF@CNT, were determined analytically through Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Brunauer-Emmett-Teller and Energy-dispersive X-ray spectroscopy (EDX). The developed Sn-MOF@CNT sensor was expansively used to determine and optimize the effect of scan rate, concentration and detection limits including the EDX and SEM analysis of used Sn-MOF@CNT nanocomposite's post hydrogen peroxide sensing. The electrochemical sensing with Sn-MOF@CNT revealed a lower limit of detection ~4.7 × 10-3 μM with wide linear range between 0.2 μM and 2.5 mM. This study has explored a new strategy for the deposition of CNT over Sn-MOF via a simple sonochemical methodology for successful electrochemical detection of H2O2, an approach that can be imitated for other applications.
The magnetic metal-organic framework Fe3O4@(Fe-(benzene-1,3,5-tricarboxylic acid) (MMOF) was prepared, characterized and studied as a magnetic sorbent for the dispersive solid-phase extraction (DSPE) of several widely used blood lipid regulators (i.e., bezafibrate, clofibric acid, clofibrate, gemfibrozil and fenofibrate) from water samples. Characterization of the synthesized Fe3O4@Fe-BTC magnetic nanomaterial was performed by Fourier transform infrared spectroscopy, powder X-ray diffractometry, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The magnetic nanocomposite was found to be chemically stable and to possess a large surface area (803.62 m2/g) and pore volume (0.59 cm³/g). The concentrations of fibrates in different water samples were determined using HPLC-UV-Vis and confirmed by UPLC-MS/MS. Parameters affecting the extraction efficiency of magnetic-DSPE were studied and optimized. The maxima absorption capacities (Qmax) were determined to be (in mg/g) 197.0 for bezafibrate, 620.3 for clofibric acid, 537.6 for clofibrate, 288.7 gemfibrozil and 223.2 for fenofibrate. Validations of the optimized magnetic DSPE method for analyses at two fibrate concentrations in spiked water samples produced relative recovery values ≤ 70% for clofibrate and within the range of 80-100% for bezafibrate, clofibric acid, gemfibrozil and fenofibrate. LODs ranging from 4 μg/L for fenofibrate to 99 μg/L for gemfibrozil were obtained. The validated methodology produced recovery values ranging from 70 to 112% (relative standard deviations < 7%).
- MeSH
- Benzene chemistry MeSH
- Water Pollutants, Chemical isolation & purification MeSH
- Solid Phase Extraction methods MeSH
- Tricarboxylic Acids chemistry MeSH
- Lipid Regulating Agents blood isolation & purification MeSH
- Magnetite Nanoparticles chemistry MeSH
- Metal-Organic Frameworks chemistry MeSH
- Water chemistry MeSH
- Iron chemistry MeSH
- Publication type
- Journal Article MeSH
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic that has been spreading around the world since December 2019. More than 10 million affected cases and more than half a million deaths have been reported so far, while no vaccine is yet available as a treatment. Considering the global healthcare urgency, several techniques, including whole genome sequencing and computed tomography imaging have been employed for diagnosing infected people. Considerable efforts are also directed at detecting and preventing different modes of community transmission. Among them is the rapid detection of virus presence on different surfaces with which people may come in contact. Detection based on non-contact optical techniques is very helpful in managing the spread of the virus, and to aid in the disinfection of surfaces. Nanomaterial-based methods are proven suitable for rapid detection. Given the immense need for science led innovative solutions, this manuscript critically reviews recent literature to specifically illustrate nano-engineered effective and rapid solutions. In addition, all the different techniques are critically analyzed, compared, and contrasted to identify the most promising methods. Moreover, promising research ideas for high accuracy of detection in trace concentrations, via color change and light-sensitive nanostructures, to assist fingerprint techniques (to identify the virus at the contact surface of the gas and solid phase) are also presented.
- MeSH
- Betacoronavirus genetics MeSH
- Genome, Viral genetics MeSH
- Coronavirus Infections diagnosis MeSH
- Metal Nanoparticles chemistry MeSH
- Humans MeSH
- Nanotechnology methods MeSH
- Pandemics MeSH
- Metal-Organic Frameworks chemistry MeSH
- RNA, Viral genetics MeSH
- Whole Genome Sequencing MeSH
- Pneumonia, Viral diagnosis MeSH
- Point-of-Care Systems * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Ibuprofen is one of the most widely used pharmaceuticals, and due to its inefficient removal by conventional wastewater treatment, it can be found in natural surface waters at high concentrations. Recently, we demonstrated that the TpBD-(CF3)2 covalent organic framework (COF) can adsorb ibuprofen from ultrapure water with high efficiency. Here, we investigate the performance of the COF for the extraction of ibuprofen from natural water samples from a lake, river, and estuary. In general, the complexity of the natural water matrix induced a reduction in the adsorption efficiency of ibuprofen as compared to ultrapure water. The best performance, with over 70% adsorption efficiency, was found in lake water, the sample which featured the lowest pH. According to the theoretical calculations, ibuprofen more favorably interacts with the COF pores in the protonated form, which could partially account for the enhanced adsorption efficiency found in lake water. In addition, we explored the effect of the presence of competing pharmaceuticals, namely, acetaminophen and phenobarbital, on the ibuprofen adsorption as binary mixtures. Acetaminophen and phenobarbital were adsorbed by TpBD-(CF3)2 with low efficiency and their presence led to an increase in ibuprofen adsorption in the binary mixtures. Overall, this study demonstrates that TpBD-(CF3)2 is an efficient adsorbent for the extraction of ibuprofen from natural waters as well.
We report on the synthesis of unique nanocomposites based on graphene oxide (GO) and oxidized single-wall carbon nanotubes (O-SWCNTs) combined with UiO-66-NH2 and UiO-66-COOH metal-organic frameworks (MOFs) decorated onto Co0·5Ni0·5FeCrO4 spinel magnetic nanoparticles (SMNPs). Novel SMNPs of Co0·5Ni0·5FeCrO4, synthesized for the first time by the sol-gel method, exhibited exceptional thermal stability up to 985 °C. To modify the physicochemical properties of the SMNPs and MOFs, hydrophilic Zr-based MOFs were directly decorated onto the SMNP (MOF-d-SMNP) which led to improved dispersion properties and enhanced the catalytic activity of the SMNP by providing additional functional groups and active catalytic sites, along with surface area expansion. The synthesis and decoration were achieved by a hydrothermal process forming covalent bonding of MOFs onto the SMNPs, using O-SWCNTs and GO monolayers as platforms. Such an approach proved to be more effective than direct mixing of nanoparticles with the platforms, as it reduced the aggregation of nanoparticles and improved the dispersion forces of the MOF-d-SMNP. The MOF-d-SMNP/GO and MOF-d-SMNP/O-SWCNT nanocomposite properties were characterized by XRD, SEM-EDS, HRTEM, FTIR, TGA, gravimetric gas sorption and BET techniques. Performed experiments revealed exceptional adsorption capacity and catalytic activity (the reduction of the toxic pollutant 4-nitrophenol to 4-aminophenol). We demonstrated that novel nanocomposite materials MOF-d-SMNP/GO and MOF-d-SMNP/O-SWCNT showed potential for water treatment and gas sorption applications. Exhibited properties make these materials promising candidates for use in applications requiring, for example, catalytic activity at elevated temperatures.