Herein, we investigated the anti-amoebic activity of phosphonium-chloride-based deep eutectic solvents against pathogenic Acanthamoeba castellanii of the T4 genotype. Deep eutectic solvents are ionic fluids composed of two or three substances, capable of self-association to form a eutectic mixture with a melting point lower than each substance. In this study, three distinct hydrophobic deep eutectic solvents were formulated, employing trihexyltetradecylphosphonium chloride as the hydrogen bond acceptor and aspirin, dodecanoic acid, and 4-tert-butylbenzoic acid as the hydrogen bond donors. Subsequently, all three deep eutectic solvents, denoted as DES1, DES2, DES3 formulations, underwent investigations comprising amoebicidal, adhesion, excystation, cytotoxicity, and cytopathogenicity assays. The findings revealed that DES2 was the most potent anti-amoebic agent, with a 94% elimination rate against the amoebae within 24 h at 30 °C. Adhesion assays revealed that deep eutectic solvents hindered amoebae adhesion to human brain endothelial cells, with DES2 exhibiting 88% reduction of adhesion. Notably, DES3 exhibited remarkable anti-excystation properties, preventing 94% of cysts from reverting to trophozoites. In cytopathogenicity experiments, deep eutectic solvent formulations and dodecanoic acid alone reduced amoebae-induced human brain endothelial cell death, with DES2 showing the highest effects. Lactate dehydrogenase assays revealed the minimal cytotoxicity of the tested deep eutectic solvents, with the exception of trihexyltetradecylphosphonium chloride, which exhibited 35% endothelial cell damage. These findings underscore the potential of specific deep eutectic solvents in combating pathogenic Acanthamoeba, presenting promising avenues for further research and development against free-living amoebae.
- MeSH
- Acanthamoeba castellanii * drug effects genetics MeSH
- Amebicides pharmacology chemistry MeSH
- Cell Adhesion drug effects MeSH
- Endothelial Cells drug effects MeSH
- Genotype * MeSH
- Humans MeSH
- Organophosphorus Compounds pharmacology chemistry MeSH
- Solvents * chemistry pharmacology MeSH
- Trophozoites drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
L-Aspartate (aspartic acid; C4H7NO4; 2-aminobutanedoic acid) is a non-essential α-amino acid found ubiquitously throughout the body, including in the brain. Aspartate is one of the protein-forming amino acids and the formation of tRNA-aspartate complex is catalysed by aspartyl tRNA synthetase. Free aspartate, which is the main subject of this review, plays key roles in metabolism, as an amino donor and acceptor. It contributes to the synthesis of protein, arginine and nitric oxide, asparagine, N-acetylaspartate and N-methyl-D-aspartate. Its major metabolic role in the brain is recycling reducing equivalents (protons) between the cytoplasm and mitochondrial matrix as part of the malate-aspartate shuttle. L-Aspartate's actions on synaptic receptors, as well as its possible presence in nerve terminals and synaptic vesicles, are, in principle, consistent with a role as an excitatory neurotransmitter. The evidence is far from conclusive and at times controversial. The role of D-aspartate in brain function is even less certain but, it appears that, rather than being a minor neurotransmitter, D-aspartate is more likely to be involved in fine regulation of endocrine and homeostatic processes. Much research remains to be done in this area. The diversity of its functions and chemistry make aspartate a complex molecule to investigate and measure in vivo. Perturbations of aspartate metabolism have been described in a range of neurological deficits, particularly those of white matter. Here, we examine what is known about the various roles of aspartate in brain, its metabolism, transport and compartmentation, its role as a neurotransmitter or a more general signalling molecule, and what is currently known about its role(s) in disease processes.
- MeSH
- Aspartic Acid * metabolism MeSH
- Humans MeSH
- Brain * metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Bacterial proton pumps, proteorhodopsins (PRs), are a major group of light-driven membrane proteins found in marine bacteria. They are functionally and structurally distinct from archaeal and eukaryotic proton pumps. To elucidate the proton transfer mechanism by PRs and understand the differences to nonbacterial pumps on a molecular level, high-resolution structures of PRs' functional states are needed. In this work, we have determined atomic-resolution structures of MAR, a PR from marine actinobacteria, in various functional states, notably the challenging late O intermediate state. These data and information from recent atomic-resolution structures on an archaeal outward proton pump bacteriorhodopsin and bacterial inward proton pump xenorhodopsin allow for deducing key universal elements for light-driven proton pumping. First, long hydrogen-bonded chains characterize proton pathways. Second, short hydrogen bonds allow proton storage and inhibit their backflow. Last, the retinal Schiff base is the active proton donor and acceptor to and from hydrogen-bonded chains.
The single-stranded RNA genome of SARS-CoV-2 is highly structured. Numerous helical stem-loop structures interrupted by mismatch motifs are present in the functionally important 5'- and 3'-UTRs. These mismatches modulate local helical geometries and feature unusual arrays of hydrogen bonding donor and acceptor groups. However, their conformational and dynamical properties cannot be directly inferred from chemical probing and are difficult to predict theoretically. A mismatch motif (SL1-motif) consisting of three consecutive U•U base pairs is located in stem-loop 1 of the 3'-UTR. We combined NMR-spectroscopy and MD-simulations to investigate its structure and dynamics. All three U•U base pairs feature two direct hydrogen bonds and are as stable as Watson-Crick A:U base pairs. Plasmodium falciparum 25S rRNA contains a triple U•U mismatch motif (Pf-motif) differing from SL1-motif only with respect to the orientation of the two closing base pairs. Interestingly, while the geometry of the outer two U•U mismatches was identical in both motifs the preferred orientation of the central U•U mismatch was different. MD simulations and potassium ion titrations revealed that the potassium ion-binding mode to the major groove is connected to the different preferred geometries of the central base pair in the two motifs.
- MeSH
- 3' Untranslated Regions * MeSH
- Base Pair Mismatch * MeSH
- COVID-19 virology MeSH
- Genome, Viral MeSH
- Nucleic Acid Conformation MeSH
- Humans MeSH
- Nucleotide Motifs * MeSH
- Base Pairing MeSH
- Plasmodium falciparum genetics MeSH
- RNA, Viral * chemistry genetics MeSH
- SARS-CoV-2 * genetics chemistry MeSH
- Molecular Dynamics Simulation MeSH
- Hydrogen Bonding MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Tandem donor splice sites (5'ss) are unique regions with at least two GU dinucleotides serving as splicing cleavage sites. The Δ3 tandem 5'ss are a specific subclass of 5'ss separated by 3 nucleotides which can affect protein function by inserting/deleting a single amino acid. One 5'ss is typically preferred, yet factors governing particular 5'ss choice are not fully understood. A highly conserved exon 21 of the STAT3 gene was chosen as a model to study Δ3 tandem 5'ss splicing mechanisms. Based on multiple lines of experimental evidence, endogenous U1 snRNA most likely binds only to the upstream 5'ss. However, the downstream 5'ss is used preferentially, and the splice site choice is not dependent on the exact U1 snRNA binding position. Downstream 5'ss usage was sensitive to exact nucleotide composition and dependent on the presence of downstream regulatory region. The downstream 5'ss usage could be best explained by two novel interactions with endogenous U6 snRNA. U6 snRNA enables the downstream 5'ss usage in STAT3 exon 21 by two mechanisms: (i) binding in a novel non-canonical register and (ii) establishing extended Watson-Crick base pairing with the downstream regulatory region. This study suggests that U6:5'ss interaction is more flexible than previously thought.
- MeSH
- Exons * MeSH
- HeLa Cells MeSH
- Humans MeSH
- RNA Splice Sites * MeSH
- RNA, Small Nuclear * metabolism genetics MeSH
- Base Sequence MeSH
- RNA Splicing MeSH
- STAT3 Transcription Factor * metabolism genetics MeSH
- Protein Binding MeSH
- Binding Sites genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Polyphenolic compounds play an essential role in plant growth, reproduction, and defense mechanisms against pathogens and environmental stresses. Extracting these compounds is the initial step in assessing phytochemical changes, where the choice of extraction method significantly influences the extracted analytes. However, due to environmental factors, analyzing numerous samples is necessary for statistically significant results, often leading to the use of harmful organic solvents for extraction. Therefore, in this study, a novel DES-based shaking-assisted extraction procedure for the separation of polyphenolic compounds from plant samples followed by LC-ESI-QTOF-MS analysis was developed. The DES was prepared from choline chloride (ChCl) as the hydrogen bond acceptor (HBA) and fructose (Fru) as the hydrogen bond donor (HBD) at various molar ratios with the addition of 30% water to reduce viscosity. Several experimental variables affecting extraction efficiency were studied and optimized using one-variable-at-a-time (OVAT) and confirmed by response surface design (RS). Nearly the same experimental conditions were obtained using both optimization methods and were set as follows: 30 mg of sample, 300 mg of ChCl:Fru 1:2 DES containing 30% w/w of water, 500 rpm shaking speed, 30 min extraction time, 10°C extraction temperature. The results were compared with those obtained using conventional solvents, such as ethanol, methanol and water, whereby the DES-based shaking-assisted extraction method showed a higher efficiency than the classical procedures. The greenness of the developed method was compared with the greenness of existing procedures for the extraction of polyphenolic substances from solid plant samples using the complementary green analytical procedure index (ComplexGAPI) approach, while the results for the developed method were better or comparable to the existing ones. In addition, the practicability of the developed procedure was evaluated by application of the blue applicability grade index (BAGI) metric. The developed procedure was applied to the determination of spruce root samples with satisfactory results and has the potential for use in the analysis of similar plant samples.
- Publication type
- Journal Article MeSH
We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures.
- MeSH
- Anions MeSH
- Halogens * chemistry MeSH
- Benzoic Acid MeSH
- Carboxylic Acids * MeSH
- Density Functional Theory MeSH
- Publication type
- Journal Article MeSH
With the goal to investigate biological phenomena at a single-cell level, we designed, synthesized and tested a molecular probe based on Förster resonance energy transfer (FRET) between a highly luminescent quantum dot (QD) as a donor and a fluorophore or fluorescence quencher as an acceptor linked by a specific peptide. In principle, QD luminescence, effectively dissipated in the probe, is switched on after the cleavage of the peptide by a protease and the release of the quencher. We proposed a novel synthesis strategy of a probe. A two-step synthesis consists of: (i) Conjugation of CdTe QDs functionalized by -COOH groups of succinic acid on the nanoparticle surface with the designed specific peptide (GTADVEDTSC) using a ligand-exchange approach; (ii) A fast, high-yield reaction of amine-reactive succinimidyl group on the BHQ-2 quencher with N-terminal of the peptide. This way, any crosslinking between individual nanoparticles and any nonspecific conjugation bonds are excluded. The analysis of the product after the first step proved a high reaction yield and nearly no occurrence of unreacted QDs, a prerequisite of the specificity of our luminescent probe. Its parameters evaluated as Michaelis-Menten description of enzymatic kinetics are similar to products published by other groups. Our research is focused on the fluorescence microscopy analyses of biologically active molecules, such as proteolytic active caspases, playing important roles in cell signaling regulations in normal and diseased states. Consequently, they are attractive targets for clinical diagnosis and medical therapy. The ultimate goal of our work was to synthesize a new QD luminescent probe for a long-time quantitative monitoring of active caspase-3/7 distribution in apoptotic osteoblastic MC3T3-E1 cells treated with camptothecin. As a result of comparison, our synthetized luminescent probe provides longer imaging times of caspases than commercial products. The probe proved the stability of the luminescence signal inside cells for more than 14 days.
Nitroalkane oxidases (NAOs) are flavoenzymes that catalyse the oxidation of nitroalkanes to their corresponding carbonyl compounds while producing nitrite anions. Herein, we present an artificial catalytic system using flavins or ethylene-bridged flavinium salts that works via an NAO-like process. Under conditions optimised in terms of solvent, base, temperature and oxygen pressure, primary nitroalkanes were transformed to aldehydes. In our system, aldehydes immediately reacted with other nitroalkane molecules to form β-nitroalcohols. The reduced flavin catalyst was re-oxidised by oxygen. An alternative mechanism towards β-nitroalcohols via 5-(2-nitrobutyl)-1,5-dihydroflavin was suggested through quantum chemical calculations and by trapping and characterising this dihydroflavin intermediate. Interestingly, 5-(2-nitrobutyl)-1,5-dihydroflavin is an analogue of the flavin adenine dinucleotide adduct previously observed in an NAO X-ray structure. In both mechanistic pathways, flavin-5-iminium species is formed by nitroalkanide addition to flavin. This process represents flavin-based umpolung of an original donor to an acceptor.
- Publication type
- Journal Article MeSH
Microbial infections and nosocomial diseases associated with biomaterial have become a major problem of public health and largely lead to revision surgery, which is painful and quite expensive for patients. These infections are caused by formation of biofilm, which present a difficulty of treatment with conventional antibiotics. The aim of our study is to investigate the theoretical adhesion of Staphylococcus aureus and Pseudomonas aeruginosa on four 3-dimensional printing filament materials used in the manufacture of medical equipment. Thus, the physicochemical properties of these microorganisms and all filament materials were determined using the contact angle measurements. Our results indicated that bacterial surfaces were hydrophilic, strongly electron donating and weakly electron accepting. In contrast, nylon, acrylonitrile butadiene-styrene, polyethylene terephthalate, and polylactic acid surfaces were hydrophobic and more electron-donor than electron-acceptor. In addition, according to the values of total free interaction energy ΔGTotal, Staphylococcus aureus was found unable to adhere to the filament materials except polyethylene terephthalate surface. However, Pseudomonas aeruginosa showed adhesion capacity only for acrylonitrile butadiene-styrene and polyethylene terephthalate surfaces. These findings imply that the usage of these 3D printed materials in the medical area necessitates more research into enhancing their resistance to bacterial adherence.
- MeSH
- Acrylonitrile * MeSH
- Bacterial Adhesion MeSH
- Biofilms MeSH
- Butadienes pharmacology MeSH
- Cross Infection * MeSH
- Humans MeSH
- Polyethylene Terephthalates chemistry MeSH
- Pseudomonas aeruginosa MeSH
- Staphylococcal Infections * MeSH
- Staphylococcus aureus MeSH
- Styrenes MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH