macrophage infiltration
Dotaz
Zobrazit nápovědu
AIMS: The aim of the study was to analyse the prognostic and predictive value of LC3A positive' 'Stone Like Structures'' (SLSs) in a large cohort of patients with non-small cell lung carcinoma (NSCLC) and to check its relationship with tumor infiltrating lymphocytes (TILs) and PD-L1 expression. METHODS: Tissue microarrays from 1015 patients diagnosed at the Institute of Pathology and Molecular Pathology, University Hospital Zurich, Switzerland, were stained for LC3A, PD-L1, CD3 and CD68 using automated tissue stainer Ventana Benchmark Ultra (Roche). TILs were assessed in matched haematoxylin and eosin stained slides. RESULTS: LC3A positive SLSs, were significantly associated with worse overall (OS) and disease-free survival (DFS) outcomes in patients with lung adenocarcinoma (LADC) (HR = 2.4, 95 %CI(.994-1.008, p = 0.029) and HR = 3.9, 95 %CI (1.002-1.014), p = 0.002 respectively), whilst it was associated with better OS and DFS in patients with lung squamous cell carcinoma (LUSC), with marginal significance (HR = .99, 95 %CI(.975-1.011),p = 0.042 and HR = .99, 95 %CI (.975-1.008), p = 0.026). Multivariate analysis showed that LC3A SLSs are independent poor prognostic factor only in patients with LADC. In addition, LC3A SLSs, were negatively associated with CD68 count in LADC, whilst there was a positive correlation in LSCC. CONCLUSIONS: LC3A SLSs are differentially associated with the survival outcomes and CD68 count in LADC and LSCC. Further studies are justified for the understanding the underlying biological mechanisms of this phenomenon.
- MeSH
- adenokarcinom plic * MeSH
- antigeny CD274 MeSH
- antigeny diferenciační myelomonocytární MeSH
- CD antigeny MeSH
- lidé MeSH
- makrofágy * MeSH
- nádory plic * MeSH
- prognóza MeSH
- proteiny asociované s mikrotubuly MeSH
- spinocelulární karcinom * MeSH
- tumor infiltrující lymfocyty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Švýcarsko MeSH
PURPOSE: Intracranial aneurysm (IA) rupture results in one of the most severe forms of stroke, with severe neurological sequelae. Inflammation appears to drive aneurysm formation and progression with macrophages playing a key role in this process. However, less is known about their involvement in aneurysm rupture. This study is aimed at demonstrating how relationship between the M1 (pro-inflammatory) and M2 (reparative) macrophage subtypes affect an aneurysm's structure resulting in its rupture. METHODS: Forty-one saccular aneurysm wall samples were collected during surgery including 13 ruptured and 28 unruptured aneurysm sacs. Structural changes were evaluated using histological staining. Macrophages in the aneurysm wall were quantified and defined as M1 and M2 using HLA-DR and CD163 antibodies. Aneurysm samples were divided into four groups according to the structural changes and the M2/1 ratio. Data were analyzed using the Mann-Whitney U test. RESULTS: This study has demonstrated an association between the severity of structural changes of an aneurysm with inflammatory cell infiltration within its wall and subsequent aneurysm rupture. More severe morphological changes and a significantly higher number of inflammatory cells were observed in ruptured IAs (p < 0.001). There was a prevalence of M2 macrophage subtypes within the wall of ruptured aneurysms (p < 0.001). A subgroup of unruptured IAs with morphological and inflammatory changes similar to ruptured IAs was observed. The common feature of this subgroup was the presence of an intraluminal thrombus. CONCLUSIONS: The degree of inflammatory cell infiltration associated with a shift in macrophage phenotype towards M2 macrophages could play an important role in structural changes of the aneurysm wall leading to its rupture.
The type of immune cells that are present within the tumor microenvironment can play a crucial role in the survival of patients. However, little is known about the dynamics of the tumor-infiltrating immune cells during disease progression. We studied the immune cells that infiltrated the tumor tissues of ovarian cancer patients at different stages of disease. The early stages of development of ovarian carcinomas were characterized by a strong Th17 immune response, whereas in stage II patients, recruitment of high numbers of Th1 cells was observed. In disseminated tumors (Stages III-IV), we detected a dominant population of Helios(+) activated regulatory T cells (Tregs) along with high numbers of monocytes/macrophages and myeloid dendritic cells (mDCs). Tumor-infiltrating Tregs had markedly lower expression of CCR4 than circulating Tregs, and the numbers of tumor-infiltrating Tregs significantly correlated with the levels of CCL22 in ovarian tumor cell culture supernatants, suggesting their recruitment via a CCR4/CCL22 interaction. CCL22 was mainly produced by tumor cells, monocytes/macrophages and mDCs in the primary ovarian tumors, and its expression markedly increased in response to IFNγ. Taken together, the specific recruitment of Tregs, probably triggered by inflammatory stimuli, leads to a significant immune suppression in the advanced stages of ovarian cancer.
- MeSH
- buňky - růstové procesy imunologie MeSH
- buňky Th17 imunologie metabolismus MeSH
- CD8-pozitivní T-lymfocyty imunologie metabolismus patologie MeSH
- chemokin CCL22 imunologie metabolismus MeSH
- dendritické buňky imunologie metabolismus MeSH
- dospělí MeSH
- interferon gama imunologie metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- makrofágy imunologie metabolismus MeSH
- monocyty imunologie metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí imunologie MeSH
- nádory vaječníků imunologie metabolismus patologie MeSH
- progrese nemoci MeSH
- receptory CCR4 imunologie metabolismus MeSH
- regulační T-lymfocyty imunologie metabolismus MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- tumor infiltrující lymfocyty imunologie metabolismus patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tumor-associated macrophages (TAMs) are prominent components of tumor stroma that promotes tumorigenesis. Many soluble factors participate in the deleterious cross-talk between TAMs and transformed cells; however mechanisms how tumors orchestrate their production remain relatively unexplored. c-Myb is a transcription factor recently described as a negative regulator of a specific immune signature involved in breast cancer (BC) metastasis. Here we studied whether c-Myb expression is associated with an increased presence of TAMs in human breast tumors. Tumors with high frequency of c-Myb-positive cells have lower density of CD68-positive macrophages. The negative association is reflected by inverse correlation between MYB and CD68/CD163 markers at the mRNA levels in evaluated cohorts of BC patients from public databases, which was found also within the molecular subtypes. In addition, we identified potential MYB-regulated TAMs recruiting factors that in combination with MYB and CD163 provided a valuable clinical multigene predictor for BC relapse. We propose that identified transcription program running in tumor cells with high MYB expression and preventing macrophage accumulation may open new venues towards TAMs targeting and BC therapy.
- MeSH
- antigeny diferenciační myelomonocytární metabolismus MeSH
- CD antigeny metabolismus MeSH
- datové soubory jako téma MeSH
- dospělí MeSH
- Kaplanův-Meierův odhad MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- makrofágy imunologie metabolismus MeSH
- nádorové mikroprostředí genetika imunologie MeSH
- nádory prsu genetika imunologie mortalita patologie MeSH
- prognóza MeSH
- proliferace buněk MeSH
- protoonkogenní proteiny c-myb metabolismus MeSH
- prsy patologie MeSH
- receptory buněčného povrchu metabolismus MeSH
- regulace genové exprese u nádorů imunologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stanovení celkové genové exprese MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Transmission plays an important role in establishing pneumococcal colonization. It comprises three key events: shedding to transmit, entering into a susceptible new host, and adhering to the mucosal surface. Shedding of pneumococci from the respiratory tract of a colonized host is a pivotal step in transmission. Using a co-housed littermate mouse model, we evaluated the importance of the susceptibility to colonization of Streptococcus pneumoniae TIGR4 strain shed from index pups to non-colonized naïve contact pups. Despite sufficient pneumococcal shedding from the colonized host, S. pneumoniae was not contagious between littermates. Neutrophils infiltrated the nasal mucosa of contact pups and contributed to susceptibility of pneumococcal colonization during the course of transmission. Rejection of pneumococcal colonization in the contact pups was associated with accumulation of neutrophils in the nasal mucosa. Inflammation, characterized by neutrophil infiltration, prevents newly entering pneumococci from adhering to the respiratory epithelium in contact mice, suggesting that it plays an important role in reducing the rate of transmission in the initial response of naïve susceptible hosts to pneumococcal acquisition. The initial response of contact mice may regulate neutrophil and/or macrophage infiltration and control the acquisition of existing pneumococci.
- MeSH
- infiltrace neutrofily MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- novorozená zvířata MeSH
- pneumokokové infekce * MeSH
- Streptococcus pneumoniae * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Pulmonary arterial hypertension (PAH) isa fatal disease characterized by vascular remodeling and chronic inflammation. Macrophages are the key orchestrators of inflammatory and repair responses, and have been demonstrated to be vital in the pathogenesis of PAH. However, specific phenotype of macrophage polarization (M1 & M2 macrophage) in the development of PAH and the underlying mechanisms how they work are still largely unclear. A rat model of monocrotaline (MCT) induced PAH was used. Hemodynamic analysis and histopathological experiments were conducted at day 3, 7, 14, 21 and 28, respectively. In PAH rat lung tissue, confocal microscopic images showed that CD68+NOS2+ M1-like macrophages were remarkably infiltrated on early stage, but dramatically decreased in mid-late stage. Meanwhile, CD68+CD206+ M2-like macrophages in lung tissue accumulated gradually since day 7 to day 28, and the relative ratio of M2/M1 macrophage increased over time. Results detected by western blot and immunohistochemistry were consistent. Further vitro functional studies revealed the possible mechanism involved in this pathophysiological process. By using Transwell co-culture system, it was found that M1 macrophages inducedendothelial cellapoptosis, while M2 macrophages significantly promoted proliferation of both endothelial cell and smooth muscle cell.These data preliminarily demonstrated a temporal dynamic change of macrophage M1/M2 polarization status in the development of experimental PAH. M1 macrophages participated in the initial stage of inflammation by accelerating apoptosis of endothelial cell, while M2 macrophages predominated in the reparative stage of inflammation and the followed stage of aberrant tissue remodeling.
- MeSH
- antigeny diferenciační myelomonocytární metabolismus MeSH
- apoptóza MeSH
- arteria pulmonalis metabolismus patologie MeSH
- časové faktory MeSH
- CD antigeny metabolismus MeSH
- cytokiny metabolismus MeSH
- endoteliální buňky pupečníkové žíly (lidské) metabolismus patologie MeSH
- fenotyp MeSH
- kokultivační techniky MeSH
- kultivované buňky MeSH
- lidé MeSH
- makrofágy metabolismus patologie MeSH
- mediátory zánětu metabolismus MeSH
- modely nemocí na zvířatech MeSH
- monokrotalin MeSH
- myocyty hladké svaloviny metabolismus patologie MeSH
- plicní arteriální hypertenze chemicky indukované metabolismus patologie MeSH
- potkani Sprague-Dawley MeSH
- proliferace buněk MeSH
- receptor mannózy metabolismus MeSH
- remodelace cév * MeSH
- synthasa oxidu dusnatého, typ II metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Myeloid immune cells promote inflammation and fibrosis in chronic liver diseases. Drug delivery systems, such as polymers, liposomes and microbubbles, efficiently target myeloid cells in healthy liver, but their targeting properties in hepatic fibrosis remain elusive. We therefore studied the biodistribution of three intravenously injected carrier material, i.e. 10 nm poly(N-(2-hydroxypropyl)methacrylamide) polymers, 100 nm PEGylated liposomes and 2000 nm poly(butyl cyanoacrylate) microbubbles, in two fibrosis models in immunocompetent mice. While whole-body imaging confirmed preferential hepatic uptake even after induction of liver fibrosis, flow cytometry and immunofluorescence analysis revealed markedly decreased carrier uptake by liver macrophage subsets in fibrosis, particularly for microbubbles and polymers. Importantly, carrier uptake co-localized with immune infiltrates in fibrotic livers, corroborating the intrinsic ability of the carriers to target myeloid cells in areas of inflammation. Of the tested carrier systems liposomes had the highest uptake efficiency among hepatic myeloid cells, but the lowest specificity for cellular subsets. Hepatic fibrosis affected carrier uptake in liver and partially in spleen, but not in other tissues (blood, bone marrow, lung, kidney). In conclusion, while drug carrier systems target distinct myeloid cell populations in diseased and healthy livers, hepatic fibrosis profoundly affects their targeting efficiency, supporting the need to adapt nanomedicine-based approaches in chronic liver disease.
- MeSH
- fluorescenční mikroskopie MeSH
- imunohistochemie MeSH
- jaterní cirhóza metabolismus MeSH
- lékové transportní systémy MeSH
- liposomy chemie MeSH
- lymfocyty metabolismus MeSH
- makrofágy metabolismus MeSH
- mikrobubliny MeSH
- myši MeSH
- nanomedicína MeSH
- polymery chemie MeSH
- průtoková cytometrie MeSH
- rentgenová mikrotomografie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The immunosuppressive effects of systemically administered mesenchymal stem cells (MSCs) and immunosuppressive drugs have been well documented. We analysed the mechanisms underlying the therapeutic effect of MSCs applied locally in combination with non-specific immunosuppression in a mouse model of allogeneic skin transplantation. The MSC-seeded and cyclosporine A (CsA)-loaded nanofibre scaffolds were applied topically to skin allografts in a mouse model and the local immune response was assessed and characterized. MSCs migrated from the scaffold into the side of injury and were detected in the graft region and draining lymph nodes (DLNs). The numbers of graft-infiltrating macrophages and the production of nitric oxide (NO) were significantly decreased in recipients treated with MSCs and CsA, and this reduction correlated with impaired production of IFNγ in the graft and DLNs. In contrast, the proportion of alternatively activated macrophages (F4/80+CD206+cells) and the production of IL-10 by intragraft macrophages were significantly upregulated. The ability of MSCs to alter the phenotype of macrophages from the M1 type into an M2 population was confirmed in a co-culture system in vitro. We suggest that the topical application of MSCs in combination with CsA induces a switch in macrophages to a population with an alternatively activated 'healing' phenotype and producing elevated levels of IL-10. These alterations in macrophage phenotype and function could represent one of the mechanisms of immunosuppressive action of MSCs applied in combination with CsA. Copyright © 2015 John Wiley & Sons, Ltd.
- MeSH
- alografty MeSH
- buněčná diferenciace MeSH
- cyklosporin farmakologie MeSH
- makrofágy metabolismus MeSH
- mezenchymální kmenové buňky metabolismus MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- přežívání štěpu účinky léků MeSH
- transplantace kůže * MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Infiltrated and activated M1 macrophages play a role in kidney injury and fibrosis during chronic kidney disease (CKD) progression. However, the specific ways that M1 macrophage polarization contributes to renal fibrosis are not fully understood. The study seeks to investigate how miR-92a-3p regulates M1 macrophage polarization and its connection to renal fibrosis in the development of CKD. Our results revealed that miR-92a-3p overexpression increased M1-macrophage activation, iNOS, IL-6, and TNF-alpha expression in RAW264.7 upon LPS stimulation. LIN28A overexpression reversed these effects. Moreover, miR-92a-3p overexpression in RAW264.7 exacerbated NRK-52E cell apoptosis induced by LPS, but LIN28A overexpression counteracted this effect. MiR-92a-3p knockout in unilateral ureteral obstruction (UUO) C57BL/6 mice led to reduced renal infiltration and fibrosis, accompanied by decreased iNOS, alpha-SMA, IL-6, TNF-alpha, and increased LIN28A. In summary, our findings suggest that miR-92a-3p may play a role in promoting renal injury and fibrosis both in vitro and in vivo. This effect is potentially achieved by facilitating M1 macrophage polarization through the targeting of LIN28A.
- MeSH
- aktivace makrofágů MeSH
- fibróza * MeSH
- ledviny patologie metabolismus MeSH
- makrofágy * metabolismus patologie MeSH
- mikro RNA * metabolismus genetika MeSH
- myši inbrední C57BL * MeSH
- myši knockoutované MeSH
- myši MeSH
- proteiny vázající RNA * metabolismus genetika MeSH
- RAW 264.7 buňky MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
CD36 mediates the uptake of long-chain fatty acids (FAs), a major energy substrate for the myocardium. Under excessive FA supply, CD36 can cause cardiac lipid accumulation and inflammation while its deletion reduces heart FA uptake and lipid content and increases glucose utilization. As a result, CD36 was proposed as a therapeutic target for obesity-associated heart disease. However, more recent reports have shown that CD36 deficiency suppresses myocardial flexibility in fuel preference between glucose and FAs, impairing tissue energy balance, while CD36 absence in tissue macrophages reduces efferocytosis and myocardial repair after injury. In line with the latter homeostatic functions, we had previously reported that CD36-/- mice have chronic subclinical inflammation. Lipids are important for the maintenance of tissue homeostasis and there is limited information on heart lipid metabolism in CD36 deficiency. Here, we document in the hearts of unchallenged CD36-/- mice abnormalities in the metabolism of triglycerides, plasmalogens, cardiolipins, acylcarnitines, and arachidonic acid, and the altered remodeling of these lipids in response to an overnight fast. The hearts were examined for evidence of inflammation by monitoring the presence of neutrophils and pro-inflammatory monocytes/macrophages using the respective positron emission tomography (PET) tracers, 64Cu-AMD3100 and 68Ga-DOTA-ECL1i. We detected significant immune cell infiltration in unchallenged CD36-/- hearts as compared with controls and immune infiltration was also observed in hearts of mice with cardiomyocyte-specific CD36 deficiency. Together, the data show that the CD36-/- heart is in a non-homeostatic state that could compromise its stress response. Non-invasive immune cell monitoring in humans with partial or total CD36 deficiency could help evaluate the risk of impaired heart remodeling and disease.
- Publikační typ
- časopisecké články MeSH