BACKGROUND: Immune checkpoint inhibitors (ICIs), including those targeting PD-1, are currently used in a wide range of tumors, but only 20-40% of patients achieve clinical benefit. The objective of our study was to find predictive peripheral blood-based biomarkers for ICI treatment. METHODS: In 41 patients with advanced malignant melanoma (MM) and NSCLC treated with PD-1 inhibitors, we analyzed peripheral blood-based immune subsets by flow cytometry before treatment initialization and the second therapy dose. Specifically, we assessed basic blood differential count, overall T cells and their subgroups, B cells, and myeloid-derived suppressor cells (MDSC). In detail, CD4 + and CD8 + T cells were assessed according to their subtypes, such as central memory T cells (TCM), effector memory T cells (TEM), and naïve T cells (TN). Furthermore, we also evaluated the predictive value of CD28 and ICOS/CD278 co-expression on T cells. RESULTS: Patients who achieved disease control on ICIs had a significantly lower baseline proportion of CD4 + TEM (p = 0.013) and tended to have a higher baseline proportion of CD4 + TCM (p = 0.059). ICI therapy-induced increase in Treg count (p = 0.012) and the proportion of CD4 + TN (p = 0.008) and CD28 + ICOS- T cells (p = 0.012) was associated with disease control. Patients with a high baseline proportion of CD4 + TCM and a low baseline proportion of CD4 + TEM showed significantly longer PFS (p = 0.011, HR 2.6 and p ˂ 0.001, HR 0.23, respectively) and longer OS (p = 0.002, HR 3.75 and p ˂ 0.001, HR 0.15, respectively). Before the second dose, the high proportion of CD28 + ICOS- T cells after ICI therapy initiation was significantly associated with prolonged PFS (p = 0.017, HR 2.51) and OS (p = 0.030, HR 2.69). Also, a high Treg count after 2 weeks of ICI treatment was associated with significantly prolonged PFS (p = 0.016, HR 2.33). CONCLUSION: In summary, our findings suggest that CD4 + TEM and TCM baselines and an early increase in the Treg count induced by PD-1 inhibitors and the proportion of CD28 + ICOS- T cells may be useful in predicting the response in NSCLC and MM patients.
- MeSH
- Inducible T-Cell Co-Stimulator Protein metabolism MeSH
- Programmed Cell Death 1 Receptor antagonists & inhibitors MeSH
- CD28 Antigens MeSH
- CD8-Positive T-Lymphocytes immunology drug effects metabolism MeSH
- Adult MeSH
- Immune Checkpoint Inhibitors * therapeutic use pharmacology MeSH
- Middle Aged MeSH
- Humans MeSH
- Melanoma * drug therapy immunology blood pathology MeSH
- Lung Neoplasms * drug therapy immunology blood pathology MeSH
- Carcinoma, Non-Small-Cell Lung * drug therapy immunology blood pathology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment paradigms for hematological malignancies. However, more than half of these patients cannot achieve sustainable tumor control, partially due to the inadequate potency of CAR-T cells in eradicating tumor cells. T cells are crucial components of the anti-tumor immune response, and multiple intrinsic T-cell features significantly influence the outcomes of CAR-T cell therapy. Herein, we review progressing research on T-cell characteristics that impact the effectiveness of CAR-T cells, including T-cell exhaustion, memory subsets, senescence, regulatory T-cells, the CD4+ to CD8+ T-cell ratio, metabolism, and the T-cell receptor repertoire. With comprehensive insight into the biological processes underlying successful CAR-T cell therapy, we will further refine the applications of these novel therapeutic modalities, and enhance their efficacy and safety for patients.
- MeSH
- Receptors, Chimeric Antigen * immunology MeSH
- Hematologic Neoplasms * therapy immunology MeSH
- Immunotherapy, Adoptive * methods MeSH
- Humans MeSH
- T-Lymphocytes immunology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Multiple myeloma (MM) is a disease which remains incurable. One of the main reasons is a weakened immune system that allows MM cells to survive. Therefore, the current research is focused on the study of immune system imbalance in MM to find the most effective immunotherapy strategies. Aiming to identify the key points of immune failure in MM patients, we analysed peripheral lymphocytes subsets from MM patients (n = 57) at various stages of the disease course and healthy individuals (HI, n = 15) focusing on T, NK, iNKT, B cells and NK-cell cytokines. Our analysis revealed that MM patients exhibited immune alterations in all studied immune subsets. Compared to HI, MM patients had a significantly lower proportion of CD4 + T cells (19.55% vs. 40.85%; p < 0.001) and CD4 + iNKT cells (18.8% vs. 40%; p < 0.001), within B cells an increased proportion of CD21LCD38L subset (4.5% vs. 0.4%; p < 0.01) and decreased level of memory cells (unswitched 6.1% vs. 14.7%; p < 0.001 and switched 7.8% vs. 11.2%; NS), NK cells displaying signs of activation and exhaustion characterised by a more than 2-fold increase in SLAMF7 MFI (p < 0.001), decreased expression of NKG2D (MFI) and NKp46 (%) on CD16 + 56 + and CD16 + 56- subset respectively (p < 0.05), Effective immunotherapy needs to consider these immune defects and monitoring of the immune status of MM patients is essential to define better interventions in the future.
- MeSH
- B-Lymphocytes immunology MeSH
- Killer Cells, Natural immunology MeSH
- Cytokines blood MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Multiple Myeloma * blood immunology therapy MeSH
- Natural Killer T-Cells immunology MeSH
- Lymphocyte Subsets immunology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-γ, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.
- MeSH
- Biomarkers MeSH
- CD4-Positive T-Lymphocytes MeSH
- Leishmaniasis, Cutaneous * MeSH
- Humans MeSH
- Memory T Cells MeSH
- Vaccine Efficacy MeSH
- Vaccines * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Despite strides in immunotherapy, glioblastoma multiforme (GBM) remains challenging due to low inherent immunogenicity and suppressive tumor microenvironment. Converting "cold" GBMs to "hot" is crucial for immune activation and improved outcomes. This study comprehensively characterized a therapeutic vaccination strategy for preclinical GBM models. The vaccine consists of Mannan-BAM-anchored irradiated whole tumor cells, Toll-like receptor ligands [lipoteichoic acid (LTA), polyinosinic-polycytidylic acid (Poly (I:C)), and resiquimod (R-848)], and anti-CD40 agonistic antibody (rWTC-MBTA). Intracranial GBM models (GL261, SB28 cells) are used to evaluate the vaccine efficacy. A substantial number of vaccinated mice exhibited complete regression of GBM tumors in a T-cell-dependent manner, with no significant toxicity. Long-term tumor-specific immune memory is confirmed upon tumor rechallenge. In the vaccine-draining lymph nodes of the SB28 model, rWTC-MBTA vaccination triggered a major rise in conventional dendritic cell type 1 (cDC1) 12 h post-treatment, followed by an increase in conventional dendritic cell type 2 (cDC2), monocyte-derived dendritic cell (moDC), and plasmacytoid dendritic cell (pDC) on Day 5 and Day 13. Enhanced cytotoxicity of CD4+ and CD8+ T cells in vaccinated mice is verified in co-culture with tumor cells. Analyses of immunosuppressive signals (T-cell exhaustion, myeloid-derived suppressor cells (MDSC), M2 macrophages) in the GBM microenvironment suggest potential combinations with other immunotherapies for enhanced efficacy. In conclusion, the authors findings demonstrate that rWTC-MBTA induces potent and long-term adaptive immune responses against GBM.
- MeSH
- CD8-Positive T-Lymphocytes MeSH
- Dendritic Cells MeSH
- Glioblastoma * metabolism MeSH
- Immunity MeSH
- Mice MeSH
- Tumor Microenvironment MeSH
- Vaccines * metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: In chronic lymphocytic leukemia (CLL), changes in the peripheral blood lymphocyte subsets play an important role in disease progression and infectious complications. The impact of chemoimmunotherapy (CIT) on these changes has not been extensively studied METHODS: We used multi-color flow cytometry, to prospectively measure absolute and relative numbers of CD4+ and CD8+ T-cells and their subsets in 45 patients with indolent untreated CLL, 86 patients indicated for first-line treatment, and 34 healthy controls. In 55 patients, we analyzed the impact of CIT RESULTS: CLL patients had a significant increase in most cell populations in comparison to controls. Progression of CLL was characterized by significantly elevated counts with the exception of a lower percentage of naïve T-cells. After treatment, the percentage of naïve T-cells further decreased at the expense of effector memory T-cells (TEM). In patients with indolent CLL, higher percentages of naïve CD4+ (p = 0.0026) and naïve CD8+ (p = 0.023) T-cells were associated with a longer time to first treatment (TTFT). The elevation of CD4+ central memory T-cells (TCM) (p = 0.27) and TEM (p = 0.003) counts and a higher percentage of CD4+ TEM (p = 0.0047), were linked with shorter TTFT. In treated patients, increased regulatory T-cells count was associated with shorter time to next treatment (TTNT) (p = 0.042), while higher CD4+ TCM count with shorter TTNT (p = 0.035) and shorter overall survival (p = 0.041). CONCLUSION: Our results indicate that naïve cell depletion and CD4+ TCM and TEM increases are detrimental to CLL patients' prognosis.
- MeSH
- CD4-Positive T-Lymphocytes MeSH
- CD8-Positive T-Lymphocytes MeSH
- Leukemia, Lymphocytic, Chronic, B-Cell * MeSH
- Humans MeSH
- Lymphocyte Subsets MeSH
- Prognosis MeSH
- T-Lymphocytes, Regulatory MeSH
- T-Lymphocyte Subsets MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Autologous tumor cell-based vaccines (ATVs) aim to prevent and treat tumor metastasis by activating patient-specific tumor antigens to induce immune memory. However, their clinical efficacy is limited. Mannan-BAM (MB), a pathogen-associated molecular pattern (PAMP), can coordinate an innate immune response that recognizes and eliminates mannan-BAM-labeled tumor cells. TLR agonists and anti-CD40 antibodies (TA) can enhance the immune response by activating antigen-presenting cells (APCs) to present tumor antigens to the adaptive immune system. In this study, we investigated the efficacy and mechanism of action of rWTC-MBTA, an autologous whole tumor cell vaccine consisting of irradiated tumor cells (rWTC) pulsed with mannan-BAM, TLR agonists, and anti-CD40 antibody (MBTA), in preventing tumor metastasis in multiple animal models. METHODS: The efficacy of the rWTC-MBTA vaccine was evaluated in mice using breast (4T1) and melanoma (B16-F10) tumor models via subcutaneous and intravenous injection of tumor cells to induce metastasis. The vaccine's effect was also assessed in a postoperative breast tumor model (4T1) and tested in autologous and allogeneic syngeneic breast tumor models (4T1 and EMT6). Mechanistic investigations included immunohistochemistry, immunophenotyping analysis, ELISA, tumor-specific cytotoxicity testing, and T-cell depletion experiments. Biochemistry testing and histopathology of major tissues in vaccinated mice were also evaluated for potential systemic toxicity of the vaccine. RESULTS: The rWTC-MBTA vaccine effectively prevented metastasis and inhibited tumor growth in breast tumor and melanoma metastatic animal models. It also prevented tumor metastasis and prolonged survival in the postoperative breast tumor animal model. Cross-vaccination experiments revealed that the rWTC-MBTA vaccine prevented autologous tumor growth, but not allogeneic tumor growth. Mechanistic data demonstrated that the vaccine increased the percentage of antigen-presenting cells, induced effector and central memory cells, and enhanced CD4+ and CD8+ T-cell responses. T-cells obtained from mice that were vaccinated displayed tumor-specific cytotoxicity, as shown by enhanced tumor cell killing in co-culture experiments, accompanied by increased levels of Granzyme B, TNF-α, IFN-γ, and CD107a in T-cells. T-cell depletion experiments showed that the vaccine's antitumor efficacy depended on T-cells, especially CD4+ T-cells. Biochemistry testing and histopathology of major tissues in vaccinated mice revealed negligible systemic toxicity of the vaccine. CONCLUSION: The rWTC-MBTA vaccine demonstrated efficacy in multiple animal models through T-cell mediated cytotoxicity and has potential as a therapeutic option for preventing and treating tumor metastasis with minimal systemic toxicity.
- MeSH
- CD40 Antigens MeSH
- Antigens, Neoplasm MeSH
- Immunologic Memory MeSH
- Humans MeSH
- Mannans MeSH
- Melanoma * MeSH
- Mice MeSH
- Breast Neoplasms * therapy MeSH
- Cancer Vaccines * therapeutic use MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients are at high risk of complications associated with COVID-19 infection due to dysfunction of their immune system. Vaccination can protect from the adverse consequences of COVID-19. However, studies on the efficacy of COVID-19 vaccines in HSCT recipients with insufficient post-HSCT immune reconstitution are still scarce. In our study, we determined how immunosuppressive medication and the reconstitution of the cellular immune system influenced T cell responses specific for the surface glycoprotein of SARS-CoV-2 virus (S antigen) after two doses of mRNA vaccine against COVID-19 in patients with myeloid malignancies treated with HSCT. METHODS: Vaccination outcomes were followed in 18 (allo-HSCT) recipients and 8 healthy volunteers. The IgG antibodies against SARS-CoV-2 spike (S) and nucleocapsid (NCP) protein were determined in ELISA and S-specific T cells were detected using a sensitive ELISPOT-IFNγ based on in vitro expansion and restimulation of T cells in pre- and post-vaccination blood samples. Multiparametric flow cytometry analysis of peripheral blood leukocyte differentiation markers was employed for determination of reconstitution of the main subpopulations of T cells and NK cells at month 6 after HSCT. RESULTS: S- specific IgG antibody response detected in 72% of the patients was lower than in healthy vaccinees (100%). Vaccine-induced T-cell responses to S1 or S2 antigen were significantly reduced in HSCT recipients, which were treated with corticosteroids in dose 5 mg of prednisone- equivalents or higher during the vaccination period or in preceeding 100 days in comparison with recipients un-affected with corticosteroids. A significant positive correlation was found between the level of anti-SARS-Cov-2 spike protein IgG antibodies and the number of functional S antigen-specific T cells. Further analysis also showed that the specific response to vaccination was significantly influenced by the interval between administration of vaccine and transplantation. Vaccination outcomes were not related to age, sex, type of mRNA vaccine used, basic diagnosis, HLA match between HSC donor and recipient, and blood counts of lymphocytes, neutrophils, and monocytes at the time of vaccination. Multiparametric flow cytometry analysis of peripheral blood leukocyte differentiation markers showed that good humoral and cellular S-specific immune responses induced by vaccination were associated with well-reconstituted CD4+ T cells, mainly CD4+ effector memory subpopulation at six months after HSCT. CONCLUSIONS: The results showed that both humoral and cellular adaptive immune responses of HSCT recipients to the SARS-CoV-2 vaccine were significantly suppressed by corticosteroid therapy. Specific response to the vaccine was significantly affected by the length of the interval between HSCT and vaccination. Vaccination as early as 5 months after HSCT can lead to a good response. Immune response to the vaccine is not related to age, gender, HLA match between HSC donor and recipient, or type of myeloid malignancy. Vaccine efficacy was dependent on well-reconstituted CD4+ T cells, at six months after HSCT.
- MeSH
- COVID-19 * prevention & control MeSH
- Immunity MeSH
- Immunoglobulin G MeSH
- Immunosuppression Therapy MeSH
- Humans MeSH
- mRNA Vaccines MeSH
- Neoplasms * MeSH
- SARS-CoV-2 MeSH
- Hematopoietic Stem Cell Transplantation * adverse effects MeSH
- COVID-19 Vaccines MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: There are a lot of studies that describe the change in quantity of T cells in patients with atopic dermatitis (AD) compared with healthy subjects. Other components of lymphocytes such as B cells are not examined as well as T cells. OBJECTIVE: We focus on immunophenotyping of B cells with their subsets (memory, naïve, switched, non-switched) and the expression of CD23 and CD200 markers in patients with AD with and without dupilumab therapy. We also evaluate the count of leukocytes and their subsets, T lymphocytes (CD4+, CD8+), natural killer (NK) cells, and T regulatory cells. METHODS: A total of 45 patients suffering from AD were examined: 32 patients without dupilumab treatment (10 men, 22 women, average age 35 years), 13 patients with dupilumab treatment (7 men, 6 women, average age 43.4 years), and 30 subjects as a control group (10 men, 20 women, average age 44.7 years). Immunophenotype was examined by flow cytometry in which monoclonal antibodies with fluorescent molecules were used. We compared the absolute and relative count of leukocytes and their subsets, T lymphocytes (CD4+ , CD8+), NK cells, T regulatory cells, absolute and relative count of B lymphocytes (memory, naïve, non-switched, switched, transient), and expression of CD23 and CD200 activation markers on B cells and on their subsets in patients with AD and control group. For statistical analysis we used nonparametric Kruskal-Wallis one-factor analysis of variance with post hoc by Dunn's test with Bonferroni modification of significance level. RESULTS: In patients with AD with and without dupilumab therapy we confirmed the significantly higher count of neutrophils, monocytes, and eosinophils; there was no difference in absolute count of B cells, NK cells and transitional B cells compared with control subjects. We confirmed higher expression of activation marker CD23 on total, memory, naïve, non-switched, and switched B lymphocytes and higher expression of CD200 on total B lymphocytes in both groups of patients with AD compared with controls. In patients without dupilumab therapy we confirmed significantly higher count of relative monocytes, relative eosinophils, and higher expression of CD200 on memory, naïve, and non-switched B lymphocytes compared with controls. In patients with dupilumab therapy we confirmed significantly higher expression of CD200 on switched B lymphocytes, higher count of relative CD4+ T lymphocytes, and lower count of absolute CD8+ T lymphocytes compared with controls. CONCLUSION: This pilot study shows higher expression of CD23 on B lymphocytes and on their subsets in patients with AD with and without dupilumab therapy. The higher expression of CD200 on switched B lymphocytes is confirmed only in patients with AD with dupilumab therapy.
- Publication type
- Journal Article MeSH
Tisagenlecleucel (tisa-cel) is a CD19-specific CAR-T cell product approved for the treatment of relapsed/refractory (r/r) DLBCL or B-ALL. We have followed a group of patients diagnosed with childhood B-ALL (n = 5), adult B-ALL (n = 2), and DLBCL (n = 25) who were treated with tisa-cel under non-clinical trial conditions. The goal was to determine how the intensive pretreatment of patients affects the produced CAR-T cells, their in vivo expansion, and the outcome of the therapy. Multiparametric flow cytometry was used to analyze the material used for manufacturing CAR-T cells (apheresis), the CAR-T cell product itself, and blood samples obtained at three timepoints after administration. We present the analysis of memory phenotype of CD4/CD8 CAR-T lymphocytes (CD45RA, CD62L, CD27, CD28) and the expression of inhibitory receptors (PD-1, TIGIT). In addition, we show its relation to the patients' clinical characteristics, such as tumor burden and sensitivity to prior therapies. Patients who responded to therapy had a higher percentage of CD8+CD45RA+CD27+ T cells in the apheresis, although not in the produced CAR-Ts. Patients with primary refractory aggressive B-cell lymphomas had the poorest outcomes which was characterized by undetectable CAR-T cell expansion in vivo. No clear correlation of the outcome with the immunophenotypes of CAR-Ts was observed. Our results suggest that an important parameter predicting therapy efficacy is CAR-Ts' level of expansion in vivo but not the immunophenotype. After CAR-T cells' administration, measurements at several timepoints accurately detect their proliferation intensity in vivo. The outcome of CAR-T cell therapy largely depends on biological characteristics of the tumors rather than on the immunophenotype of produced CAR-Ts.