multilocus analyses
Dotaz
Zobrazit nápovědu
Syphilis is an important public health problem and an increasing incidence has been noted in recent years. Characterization of strain diversity through molecular data plays a critical role in the epidemiological understanding of this re-emergence. We here propose a new high-resolution multilocus sequence typing (MLST) scheme for Treponema pallidum subsp. pallidum (TPA). We analyzed 30 complete and draft TPA genomes obtained directly from clinical samples or from rabbit propagated strains to identify suitable typing loci and tested the new scheme on 120 clinical samples collected in Switzerland and France. Our analyses yielded three loci with high discriminatory power: TP0136, TP0548, and TP0705. Together with analysis of the 23S rRNA gene mutations for macrolide resistance, we propose these loci as MLST for TPA. Among clinical samples, 23 allelic profiles as well as a high percentage (80% samples) of macrolide resistance were revealed. The new MLST has higher discriminatory power compared to previous typing schemes, enabling distinction of TPA from other treponemal bacteria, distinction between the two main TPA clades (Nichols and SS14), and differentiation of strains within these clades.
- MeSH
- alely MeSH
- antibakteriální látky farmakologie MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- genotyp MeSH
- globus pallidus MeSH
- jednonukleotidový polymorfismus MeSH
- makrolidy farmakologie MeSH
- multilokusová sekvenční typizace metody MeSH
- RNA ribozomální 23S genetika MeSH
- sekvenční analýza DNA metody MeSH
- syfilis epidemiologie MeSH
- Treponema pallidum genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Francie MeSH
- Švýcarsko MeSH
Clades that have undergone episodes of rapid cladogenesis are challenging from a phylogenetic point of view. They are generally characterised by short or missing internal branches in phylogenetic trees and by conflicting topologies among individual gene trees. This may be the case of the subfamily Trematominae, a group of marine teleosts of coastal Antarctic waters, which is considered to have passed through a period of rapid diversification. Despite much phylogenetic attention, the relationships among Trematominae species remain unclear. In contrast to previous studies that were mostly based on concatenated datasets of mitochondrial and/or single nuclear loci, we applied various single-locus and multilocus phylogenetic approaches to sequences from 11 loci (eight nuclear) and we also used several methods to assess the hypothesis of a radiation event in Trematominae evolution. Diversification rate analyses support the hypothesis of a period of rapid diversification during Trematominae history and only a few nodes in the hypothetical species tree were consistently resolved with various phylogenetic methods. We detected significant discrepancies among trees from individual genes of these species, most probably resulting from incomplete lineage sorting, suggesting that concatenation of loci is not the most appropriate way to investigate Trematominae species interrelationships. These data also provide information about the possible effects of historic climate changes on the diversification rate of this group of fish.
- MeSH
- Bayesova věta MeSH
- fylogeneze MeSH
- ryby klasifikace genetika MeSH
- sekvenční analýza DNA MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Antarktida MeSH
"Candidatus Neoehrlichia mikurensis" is the tick-borne agent of neoehrlichiosis, an infectious disease that primarily affects immunocompromised patients. So far, the genetic variability of "Ca. Neoehrlichia" has been studied only by comparing 16S rRNA genes and groEL operon sequences. We describe the development and use of a multilocus sequence analysis (MLSA) protocol to characterize the genetic diversity of clinical "Ca. Neoehrlichia" strains in Europe and their relatedness to other species within the Anaplasmataceae family. Six genes were selected: ftsZ, clpB, gatB, lipA, groEL, and 16S rRNA. Each MLSA locus was amplified by real-time PCR, and the PCR products were sequenced. Phylogenetic trees of MLSA locus relatedness were constructed from aligned sequences. Blood samples from 12 patients with confirmed "Ca. Neoehrlichia" infection from Sweden (n = 9), the Czech Republic (n = 2), and Germany (n = 1) were analyzed with the MLSA protocol. Three of the Swedish strains exhibited identical lipA sequences, while the lipA sequences of the strains from the other nine patients were identical to each other. One of the Czech strains had one differing nucleotide in the clpB sequence from the sequences of the other 11 strains. All 12 strains had identical sequences for the genes 16S rRNA, ftsZ, gatB, and groEL. According to the MLSA, among the Anaplasmataceae, "Ca. Neoehrlichia" is most closely related to Ehrlichia ruminantium, less so to Anaplasma phagocytophilum, and least to Wolbachia endosymbionts. To conclude, three sequence types of infectious "Ca. Neoehrlichia" were identified: one in the west of Sweden, one in the Czech Republic, and one spread throughout Europe.
- MeSH
- Anaplasmataceae klasifikace genetika izolace a purifikace MeSH
- esenciální geny MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- genotyp * MeSH
- infekce bakteriemi čeledi Anaplasmataceae epidemiologie mikrobiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- molekulární epidemiologie metody MeSH
- multilokusová sekvenční typizace metody MeSH
- RNA ribozomální 16S genetika MeSH
- senioři MeSH
- shluková analýza MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH
- Švédsko MeSH
Species of the Ganoderma lucidum complex are used in many types of health products. However, the taxonomy of this complex has long been chaotic, thus limiting its uses. In the present study, 32 collections of the complex from Asia, Europe and North America were analyzed from both morphological and molecular phylogenetic perspectives. The combined dataset, including an outgroup, comprised 33 ITS, 24 tef1α, 24 rpb1 and 21 rpb2 sequences, of which 19 ITS, 20 tef1α, 20 rpb1 and 17 rpb2 sequences were newly generated. A total of 13 species of the complex were recovered in the multilocus phylogeny. These 13 species were not strongly supported as a single monophyletic lineage, and were further grouped into three lineages that cannot be defined by their geographic distributions. Clade A comprised Ganoderma curtisii, Ganoderma flexipes, Ganoderma lingzhi, Ganoderma multipileum, Ganoderma resinaceum, Ganoderma sessile, Ganoderma sichuanense and Ganoderma tropicum, Clade B comprised G. lucidum, Ganoderma oregonense and Ganoderma tsugae, and Clade C comprised Ganoderma boninense and Ganoderma zonatum. A dichotomous key to the 13 species is provided, and their key morphological characters from context, pores, cuticle cells and basidiospores are presented in a table. The taxonomic positions of these species are briefly discussed. Noteworthy, the epitypification of G. sichuanense is rejected.
- MeSH
- fylogeneze * MeSH
- Ganoderma chemie genetika MeSH
- léčivé rostliny chemie genetika MeSH
- Polyporales chemie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
Cronobacter spp. are bacterial pathogens that affect children and immunocompromised adults. In this study, we used multilocus sequence typing (MLST) to determine sequence types (STs) in 11 Cronobacter spp. strains isolated from retail foods, 29 strains from dust samples obtained from vacuum cleaners, and 4 clinical isolates. Using biochemical tests, species-specific polymerase chain reaction, and MLST analysis, 36 strains were identified as Cronobacter sakazakii, and 6 were identified as Cronobacter malonaticus. In addition, one strain that originated from retail food and one from a dust sample from a vacuum cleaner were identified on the basis of MLST analysis as Cronobacter dublinensis and Cronobacter turicensis, respectively. Cronobacter spp. strains isolated from the retail foods were assigned to eight different MLST sequence types, seven of which were newly identified. The strains isolated from the dust samples were assigned to 7 known STs and 14 unknown STs. Three clinical isolates and one household dust isolate were assigned to ST4, which is the predominant ST associated with neonatal meningitis. One clinical isolate was classified based on MLST analysis as Cronobacter malonaticus and belonged to an as-yet-unknown ST. Three strains isolated from the household dust samples were assigned to ST1, which is another clinically significant ST. It can be concluded that Cronobacter spp. strains of different origin are genetically quite variable. The recovery of C. sakazakii strains belonging to ST1 and ST4 from the dust samples suggests the possibility that contamination could occur during food preparation. All of the novel STs and alleles for C. sakazakii, C. malonaticus, C. dublinensis, and C. turicensis determined in this study were deposited in the Cronobacter MLST database available online ( http://pubmlst.org/cronobacter/).
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Cronobacter sakazakii klasifikace izolace a purifikace metabolismus MeSH
- Cronobacter klasifikace izolace a purifikace metabolismus MeSH
- enterobakteriální infekce mikrobiologie MeSH
- fylogeneze MeSH
- lidé MeSH
- mikrobiologie životního prostředí * MeSH
- molekulární typizace MeSH
- multilokusová sekvenční typizace MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- potravinářská mikrobiologie * MeSH
- prach * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Hybridization and introgression can impact the evolution of natural populations. Several wild canid species hybridize in nature, sometimes originating new taxa. However, hybridization with free-ranging dogs is threatening the genetic integrity of grey wolf populations (Canis lupus), or even the survival of endangered species (e.g., the Ethiopian wolf C. simensis). Efficient molecular tools to assess hybridization rates are essential in wolf conservation strategies. We evaluated the power of biparental and uniparental markers (39 autosomal and 4 Y-linked microsatellites, a melanistic deletion at the β-defensin CBD103 gene, the hypervariable domain of the mtDNA control-region) to identify the multilocus admixture patterns in wolf x dog hybrids. We used empirical data from 2 hybrid groups with different histories: 30 presumptive natural hybrids from Italy and 73 Czechoslovakian wolfdogs of known hybrid origin, as well as simulated data. We assessed the efficiency of various marker combinations and reference samples in admixture analyses using 69 dogs of different breeds and 99 wolves from Italy, Balkans and Carpathian Mountains. Results confirmed the occurrence of hybrids in Italy, some of them showing anomalous phenotypic traits and exogenous mtDNA or Y-chromosome introgression. Hybridization was mostly attributable to village dogs and not strictly patrilineal. The melanistic β-defensin deletion was found only in Italian dogs and in putative hybrids. The 24 most divergent microsatellites (largest wolf-dog FST values) were equally or more informative than the entire panel of 39 loci. A smaller panel of 12 microsatellites increased risks to identify false admixed individuals. The frequency of F1 and F2 was lower than backcrosses or introgressed individuals, suggesting hybridization already occurred some generations in the past, during early phases of wolf expansion from their historical core areas. Empirical and simulated data indicated the identification of the past generation backcrosses is always uncertain, and a larger number of ancestry-informative markers is needed.
- MeSH
- beta-defensiny genetika MeSH
- chromozom Y MeSH
- genetická variace MeSH
- genetické markery * MeSH
- genotyp MeSH
- hybridizace genetická * MeSH
- mikrosatelitní repetice MeSH
- mitochondriální DNA MeSH
- molekulární evoluce MeSH
- multilokusová sekvenční typizace * MeSH
- populační genetika MeSH
- psi MeSH
- shluková analýza MeSH
- vlci MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Itálie MeSH
The phylogenetic relationships and taxonomy of the spirlins in the genus Alburnoides are examined by comparative sequencing analysis of mitochondrial and nuclear markers. Molecular analyses revealed 17 Eurasian lineages divided into two main clades, termed the Ponto-Caspian and European in accordance with the lineage distribution. The indel diagnostics of β-actin and S7 markers and translation of cyt b to the amino acid chain were evaluated as a reliable identifying tool for most of the recognised lineages. Lineage richness is closely connected with the existence of known glacial refugia in most cases. The underestimation of species richness in the genus Alburnoides is confirmed: the genetic analyses support the validity of 11 morphologically accepted species; apart from them, four phylogenetic lineages requiring descriptions as separate species were revealed. The distribution area of the nominotypical species A. bipunctatus s. stricto is newly defined. Two diverging phylogenetic lineages, A. ohridanus, and A. prespensis complex, were observed in the Southeast Adriatic Freshwater Ecoregion, confirmed as a hotspot of endemic biodiversity. A. ohridanus demonstrates high divergence from the A. prespensis complex, represented by three similar mitochondrial lineages with the same nuclear haplotypes and sympatric occurrence. The range restricted endemism was confirmed for at least seven species. The Albanian river systems, as well as the wider Ponto-Caspian basin exhibit complications among definite species delineations and gaps in understanding of microevolutionary processes; these areas require further investigations.
- MeSH
- biodiverzita MeSH
- Cyprinidae klasifikace genetika MeSH
- fylogeneze MeSH
- haplotypy MeSH
- mitochondriální DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Multilocus hybrid zone (HZ) studies predate genomics by decades. The power of early methods is becoming apparent and now large datasets are commonplace. Relating introgression along a chromosome to evolutionary process is challenging: although reduced introgression regions may indicate speciation genes, this pattern may be obscured by asymmetric introgression of linked invasive genes. Further, HZ movement may form salients and leave islands in its wake. Barton's concordance was proposed 24 years ago for assessing introgression where geographic patterns are complex. The geographic axis of introgression is replaced with the hybrid index. We compare this, a recently proposed genomic clines approach, and two-dimensional (2D) geographic analyses, for 24 X chromosome loci of 2873 mice from the central-European house mouse HZ. In 2D, 14 loci show linear contact, seven precisely matching previous studies. Four show introgression islands to the east of the zone, suggesting past westward zone movement, two show westward salients. Barton's concordance both recovers and refines this information. A region of reduced introgression on the central X is supported, despite X centromere-proximal male-biased westward introgression matching a westward 2D geographic salient. Genomic clines results are consistent regarding introgression asymmetries, but otherwise more difficult to interpret. Evidence for genetic conflict is discussed.
- MeSH
- chromozom X genetika MeSH
- druhová specificita MeSH
- genetická variace MeSH
- hybridizace genetická MeSH
- myši genetika MeSH
- populační genetika MeSH
- rozmnožování MeSH
- savčí chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši genetika MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH
First multilocus analysis of the largest Neotropical cichlid genus Crenicichla combining mitochondrial (cytb, ND2, 16S) and nuclear (S7 intron 1) genes and comprising 602 sequences of 169 specimens yields a robust phylogenetic hypothesis. The best marker in the combined analysis is the ND2 gene which contributes throughout the whole range of hierarchical levels in the tree and shows weak effects of saturation at the 3rd codon position. The 16S locus exerts almost no influence on the inferred phylogeny. The nuclear S7 intron 1 resolves mainly deeper nodes. Crenicichla is split into two main clades: (1) Teleocichla, the Crenicichla wallacii group, and the Crenicichla lugubris-Crenicichla saxatilis groups ("the TWLuS clade"); (2) the Crenicichla reticulata group and the Crenicichla lacustris group-Crenicichla macrophthalma ("the RMLa clade"). Our study confirms the monophyly of the C. lacustris species group with very high support. The biogeographic reconstruction of the C. lacustris group using dispersal-vicariance analysis underlines the importance of ancient barriers between the middle and upper Paraná River (the Guaíra Falls) and between the middle and upper Uruguay River (the Moconá Falls). Our phylogeny recovers two endemic species flocks within the C. lacustris group, the Crenicichla missioneira species flock and the herein discovered Crenicichla mandelburgeri species flock from the Uruguay and Paraná/Iguazú Rivers, respectively. We discuss putative sympatric diversification of trophic traits (morphology of jaws and lips, dentition) and propose these species flocks as models for studying sympatric speciation in complex riverine systems. The possible role of hybridization as a mechanism of speciation is mentioned with a recorded example (Crenicichla scottii).
- MeSH
- Bayesova věta MeSH
- cichlidy anatomie a histologie klasifikace genetika MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- genetická variace MeSH
- multilokusová sekvenční typizace MeSH
- pravděpodobnostní funkce MeSH
- RNA ribozomální 16S genetika MeSH
- rybí proteiny genetika MeSH
- sekvenční seřazení MeSH
- sympatrie MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Paraguay MeSH
- Uruguay MeSH
Flagellates of the Leishmania donovani complex are causative agents of human cutaneous and visceral leishmaniasis. The complex is comprised of L. donovani, Leishmania infantum and Leishmania archibaldi, although the latter is not now considered to be a valid species. Morphological distinction of Leishmania species is impractical, so biochemical, immunological and DNA-based criteria were introduced. Multilocus enzyme electrophoresis (MLEE) is the present gold standard. We have sequenced the genes encoding five metabolic enzymes used for MLEE, both to resolve the DNA diversity underlying isoenzyme mobility differences and to explore the potential of these targets for higher resolution PCR-based multilocus sequence typing. The genes sequenced were isocitrate dehydrogenase, malic enzyme, mannose phosphate isomerase, glucose-6-phosphate dehydrogenase, and fumarate hydratase, for 17 strains of L. infantum, seven strains of L. donovani, and three strains of L. archibaldi. Protein mobilities predicted from amino acid sequences did not always accord precisely with reported MLEE profiles. A high number of heterozygous sites was detected. Heterozygosity was particularly frequent in some strains and indirectly supported the presence of genetic exchange in Leishmania. Phylogenetic analysis of a concatenated alignment based on a total of 263 kb protein-coding sequences showed strong correlation of genotype with geographical origin. Europe and Africa appear to represent independent evolutionary centres.