Rapid gene isolation in barley and wheat by mutant chromosome sequencing

. 2016 Oct 31 ; 17 (1) : 221. [epub] 20161031

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27795210
Odkazy

PubMed 27795210
PubMed Central PMC5087116
DOI 10.1186/s13059-016-1082-1
PII: 10.1186/s13059-016-1082-1
Knihovny.cz E-zdroje

Identification of causal mutations in barley and wheat is hampered by their large genomes and suppressed recombination. To overcome these obstacles, we have developed MutChromSeq, a complexity reduction approach based on flow sorting and sequencing of mutant chromosomes, to identify induced mutations by comparison to parental chromosomes. We apply MutChromSeq to six mutants each of the barley Eceriferum-q gene and the wheat Pm2 genes. This approach unambiguously identified single candidate genes that were verified by Sanger sequencing of additional mutants. MutChromSeq enables reference-free forward genetics in barley and wheat, thus opening up their pan-genomes to functional genomics.

Zobrazit více v PubMed

Kunzel G, Korzun L, Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics. 2000;154:397–412. PubMed PMC

Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, et al. Structural and functional partitioning of bread wheat chromosome 3B. Science. 2014;345:1249721. doi: 10.1126/science.1249721. PubMed DOI

Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen JE, Weigel D, Andersen SU. SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods. 2009;6:550–1. doi: 10.1038/nmeth0809-550. PubMed DOI

Takagi H, Tamiru M, Abe A, Yoshida K, Uemura A, Yaegashi H, Obara T, Oikawa K, Utsushi H, Kanzaki E, et al. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat Biotechnol. 2015;33:445–9. PubMed

Nordstrom KJ, Albani MC, James GV, Gutjahr C, Hartwig B, Turck F, Paszkowski U, Coupland G, Schneeberger K. Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nat Biotechnol. 2013;31:325–30. doi: 10.1038/nbt.2515. PubMed DOI

Schneeberger K. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet. 2014;15:662–76. doi: 10.1038/nrg3745. PubMed DOI

International Wheat Genome Sequencing C A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. doi: 10.1126/science.1251788. PubMed DOI

Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D'Ascenzo M, et al. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J. 2013;76:494–505. doi: 10.1111/tpj.12294. PubMed DOI PMC

Henry IM, Nagalakshmi U, Lieberman MC, Ngo KJ, Krasileva KV, Vasquez-Gross H, Akhunova A, Akhunov E, Dubcovsky J, Tai TH, Comai L. Efficient genome-wide detection and cataloging of EMS-induced mutations using wxome capture and next-generation sequencing. Plant Cell. 2014;26:1382–97. doi: 10.1105/tpc.113.121590. PubMed DOI PMC

King R, Bird N, Ramirez-Gonzalez R, Coghill JA, Patil A, Hassani-Pak K, Uauy C, Phillips AL. Mutation scanning in wheat by exon capture and Next-Generation Sequencing. PLoS One. 2015;10:e0137549. doi: 10.1371/journal.pone.0137549. PubMed DOI PMC

Pankin A, Campoli C, Dong X, Kilian B, Sharma R, Himmelbach A, Saini R, Davis SJ, Stein N, Schneeberger K, von Korff M. Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. Genetics. 2014;198:383–96. doi: 10.1534/genetics.114.165613. PubMed DOI PMC

Mascher M, Jost M, Kuon JE, Himmelbach A, Assfalg A, Beier S, Scholz U, Graner A, Stein N. Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol. 2014;15:R78. doi: 10.1186/gb-2014-15-6-r78. PubMed DOI PMC

Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JDG, et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol. 2016. In press. PubMed

Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science. 2009;323:1357–60. doi: 10.1126/science.1166289. PubMed DOI PMC

Dolezel J, Vrana J, Capal P, Kubalakova M, Buresova V, Simkova H. Advances in plant chromosome genomics. Biotechnol Adv. 2014;32:122–36. doi: 10.1016/j.biotechadv.2013.12.011. PubMed DOI

Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. FISHIS: Fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One. 2013;8:e57994. PubMed PMC

Lundqvist U, Lundqvist A. Mutagen specificity in barley for 1580 Eceriferum mutants localized to 79 loci. Hereditas. 1988;108:1–12. doi: 10.1111/j.1601-5223.1988.tb00676.x. DOI

Schneider LM, Adamski NM, Christensen CE, Stuart DB, Vautrin S, Hansson M, Uauy C, von Wettstein-Knowles P. The Cer-cqu gene cluster determines three key players in a beta-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. J Exp Bot. 2016. doi:10.1093/jxb/erw105. PubMed PMC

Takahashi R, Yamamoto J, Yasuda S, Itano Y. Inheritance and linkage studies in barley. Ber Ohara Inst landw Forsch. 1953;10:29–52.

Tsuchiya T. Cytogenetics of telotrisomics in barley. Barley Genet Newsl. 1972;2:93–8. PubMed

Simkova H, Svensson JT, Condamine P, Hribova E, Suchankova P, Bhat PR, Bartos J, Safar J, Close TJ, Dolezel J. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics. 2008;9:294. doi: 10.1186/1471-2164-9-294. PubMed DOI PMC

Colmsee C, Beier S, Himmelbach A, Schmutzer T, Stein N, Scholz U, Mascher M. BARLEX--the Barley Draft Genome Explorer. Mol Plant. 2015;8:964–6. doi: 10.1016/j.molp.2015.03.009. PubMed DOI

Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster of disease resistance genes in lettuce. Plant Cell. 2004;16:2870–94. doi: 10.1105/tpc.104.025502. PubMed DOI PMC

Pugsley AT, Carter MV. The resistance of twelve varieties of Triticum vulgare to Erysiphe graminis tritici. Aust J Biol Sci. 1953;6:335–46. doi: 10.1071/BI9530335. PubMed DOI

Mayer KF, Taudien S, Martis M, Simkova H, Suchankova P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, et al. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 2009;151:496–505. doi: 10.1104/pp.109.142612. PubMed DOI PMC

Mayer KFX, Martis M, Hedley PE, Simková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell. 2011;23:1249–63. doi: 10.1105/tpc.110.082537. PubMed DOI PMC

Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, König S, Kugler KG, Scholz U, Hackauf B, et al. Reticulate evolution of the rye genome. Plant Cell. 2013;25:3685–98. doi: 10.1105/tpc.113.114553. PubMed DOI PMC

Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA. Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet. 1999;23:305–8. doi: 10.1038/15479. PubMed DOI

Barbazuk WB, Bedell JA, Rabinowicz PD. Reduced representation sequencing: a success in maize and a promise for other plant genomes. Bioessays. 2005;27:839–48. doi: 10.1002/bies.20262. PubMed DOI

Matvienko M, Kozik A, Froenicke L, Lavelle D, Martineau B, Perroud B, Michelmore R. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride. PLoS One. 2013;8:e55913. doi: 10.1371/journal.pone.0055913. PubMed DOI PMC

Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet. 2009;119:889–98. doi: 10.1007/s00122-009-1097-z. PubMed DOI

Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet. 2015;47:1494–8. doi: 10.1038/ng.3439. PubMed DOI

Witek K, Jupe F, Witek A, Baker D, Clark MD, Jones JDG. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nat Biotechnol. 2016. In press. PubMed

Lysak MA, Cihalikova J, Kubalakova M, Simkova H, Kunzel G, Dolezel J. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.) Chromosome Res. 1999;7:431–44. doi: 10.1023/A:1009293628638. PubMed DOI

Vrana J, Kubalakova M, Simkova H, Cihalikova J, Lysak MA, Dolezel J. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–41. PubMed PMC

Kubalakova M, Valarik M, Bartos J, Vrana J, Cihalikova J, Molnar-Lang M, Dolezel J. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome. 2003;46:893–905. doi: 10.1139/g03-054. PubMed DOI

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, GPDPS The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol. 2009;9:115. doi: 10.1186/1471-2229-9-115. PubMed DOI PMC

Farrell A, Coleman BI, Benenati B, Brown KM, Blader IJ, Marth GT, Gubbels MJ. Whole genome profiling of spontaneous and chemically induced mutations in Toxoplasma gondii. BMC Genomics. 2014;15:354. doi: 10.1186/1471-2164-15-354. PubMed DOI PMC

Shirasawa K, Hirakawa H, Nunome T, Tabata S, Isobe S. Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato. Plant Biotechnol J. 2016;14:51–60. doi: 10.1111/pbi.12348. PubMed DOI PMC

Lindner H, Kessler SA, Muller LM, Shimosato-Asano H, Boisson-Dernier A, Grossniklaus U. TURAN and EVAN mediate pollen tube reception in Arabidopsis Synergids through protein glycosylation. PLoS Biol. 2015;13:e1002139. doi: 10.1371/journal.pbio.1002139. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A single NLR gene confers resistance to leaf and stripe rust in wheat

. 2024 Nov 15 ; 15 (1) : 9925. [epub] 20241115

DArTseq genotyping facilitates the transfer of "exotic" chromatin from a Secale cereale × S. strictum hybrid into wheat

. 2024 ; 15 () : 1407840. [epub] 20240906

A conditional mutation in a wheat (Triticum aestivum L.) gene regulating root morphology

A chromosome arm from Thinopyrum intermedium × Thinopyrum ponticum hybrid confers increased tillering and yield potential in wheat

. 2024 Feb ; 44 (2) : 7. [epub] 20240122

Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69

. 2024 Jan 08 ; 5 (1) : 100646. [epub] 20230706

A pathogen-induced putative NAC transcription factor mediates leaf rust resistance in barley

. 2023 Sep 06 ; 14 (1) : 5468. [epub] 20230906

Flow Cytometric Analysis and Sorting of Plant Chromosomes

The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase

. 2023 Jun ; 55 (6) : 921-926. [epub] 20230522

An unusual tandem kinase fusion protein confers leaf rust resistance in wheat

. 2023 Jun ; 55 (6) : 914-920. [epub] 20230522

Flow karyotyping of wheat-Aegilops additions facilitate dissecting the genomes of Ae. biuncialis and Ae. geniculata into individual chromosomes

. 2022 ; 13 () : 1017958. [epub] 20221003

Capturing Wheat Phenotypes at the Genome Level

. 2022 ; 13 () : 851079. [epub] 20220704

Identification, High-Density Mapping, and Characterization of New Major Powdery Mildew Resistance Loci From the Emmer Wheat Landrace GZ1

. 2022 ; 13 () : 897697. [epub] 20220513

Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62

. 2022 Mar 25 ; 13 (1) : 1607. [epub] 20220325

Chromosome analysis and sorting

. 2021 Apr ; 99 (4) : 328-342. [epub] 20210221

Molecular organization of recombinant human-Arabidopsis chromosomes in hybrid cell lines

. 2021 Mar 30 ; 11 (1) : 7160. [epub] 20210330

A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis

. 2021 Mar ; 229 (5) : 2812-2826. [epub] 20201215

Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins

. 2021 Mar ; 7 (3) : 327-341. [epub] 20210311

A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat

. 2021 Feb 11 ; 12 (1) : 956. [epub] 20210211

Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing

Stem rust resistance in wheat is suppressed by a subunit of the mediator complex

. 2020 Feb 28 ; 11 (1) : 1123. [epub] 20200228

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...