Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
The aim of this project is to develop a conceptually new class of biodegradable phosphorus-containing contrast agents for 1H/31P magnetic resonance (MR). The main advantage of these contrast agents, which contain phosphorus compounds connected by biodegradable linkers to Gd3+ or Fe3+, is their ability to switch between 1H and 31P MR contrast in response to external biochemical changes. The contrast agents act solely as T1 contrast agents for 1H MR to provide anatomical information. As the 31P signal gets widen due to the presence paramagnetic of Gd3+/Fe3+ ions in their vicinity, it becomes undetectable by 31P MR. If the link is cleaved in response to an external biochemical stimulus, the paramagnetic switch is released, with the 31P signal appearing. Both 1H and 31P MR imaging can be easily combined within the same experiment, providing both anatomical and functional information.
Cílem projektu je vyvinout koncepčně novou třídu biodegradovatelných responzivních kontrastních látek, které jsou určené pro 1H/31P magnetickou rezonanci (MR). Unikátnost těchto kontrastních látek obsahující sloučeniny fosforu s navázaným gadoliniem nebo železem spočívá v přepnutí z 1H na 31P MR kontrast jako odpověď na vnější biochemické změny. Činidlo obsahující současně fosfor a gadolinium nebo železo vykazuje pouze vlastnosti T1 kontrastní látky u 1H MR zobrazování a poskytuje anatomické informace, protože Gd3+/Fe3+ způsobuje rozšíření 31P MR signálu, a proto není fosforový MR signál detekovatelný. Pokud bude vazba mezi fosforem a Gd3+/Fe3+ přerušena prostřednictvím biochemického podnětu, Gd3+/Fe3+ se uvolní, 31P MR signál ve spektru se zúží a proto bude detekovatelný pomocí 31P MR. Výhodou je, že 1H a 31P MR se může jednoduše kombinovat během jednoho experimentu a proto tato kontrastní látka může poskytovat nejen anatomickou, ale i funkční diagnostickou informaci.
- Klíčová slova
- kontrastní látka, contrast agent, Responzivní kontrastní látky, Drug delivery systémy, 1H/31P magnetická resonance, Responsive contrast agents, Drug delivery systems, 1H/31P magnetic resonance, 31P zobrazování magnetickou rezonancí, funkční nanodiagnostika, 31P magnetic resonance imaging, functional nanodiagnostics,
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR
In this work, we present the synthesis and evaluation of magnetic resonance (MR) properties of novel phosphorus/iron-containing probes for dual 31P and 1H MR imaging and spectroscopy (MRI and MRS). The presented probes are composed of biocompatible semitelechelic and multivalent phospho-polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) coordinated with small paramagnetic Fe3+ ions or superparamagnetic maghemite (γ-Fe2O3) nanoparticles via deferoxamine group linked to the end or along the polymer chains. All probes provided very short 1H T1 and T2 relaxation times even at low iron concentrations. The presence of iron had a significant impact on the shortening of 31P relaxation, with the effect being more pronounced for probes based on γ-Fe2O3 and multivalent polymer. While the water-soluble probe having one Fe3+ ion per polymer chain was satisfactorily visualized by both 31P-MRS and 31P-MRI, the probe with multiple Fe3+ ions could only be detected by 31P-MRS, and the probes consisting of γ-Fe2O3 nanoparticles could not be imaged by either technique due to their ultra-short 31P relaxations. In this proof-of-principle study performed on phantoms at a clinically relevant magnetic fields, we demonstrated how the different forms and concentrations of iron affect both the 1H MR signal of the surrounding water molecules and the 31P MR signal of the phospho-polymer probe. Thus, this double contrast can be exploited to simultaneously visualize body anatomy and monitor probe biodistribution.
Antibody-mediated targeting is an efficient strategy to enhance the specificity and selectivity of polymer nanomedicines towards the target site, typically a tumor. However, direct covalent coupling of an antibody with a polymer usually results in a partial damage of the antibody binding site accompanied with a compromised biological activity. Here, an original solution based on well-defined non-covalent interactions between tris-nitrilotriacetic acid (trisNTA) and hexahistidine (His-tag) groups, purposefully introduced to the structure of each macromolecule, is described. Specifically, trisNTA groups were attached along the chains of a hydrophilic statistical copolymer based on N-(2-hydroxypropyl)methacrylamide (HPMA), and at the end or along the chains of thermo-responsive di-block copolymers based on N-isopropylmethacrylamide (NIPMAM) and HPMA; His-tag was incorporated to the structure of a recombinant single chain fragment of an anti-GD2 monoclonal antibody (scFv-GD2). Static and dynamic light scattering analyses confirmed that mixing of polymer with scFv-GD2 led to the formation of polymer/scFv-GD2 complexes; those prepared from thermo-responsive polymers formed stable micelles at 37 °C. Flow cytometry and fluorescence microscopy clearly demonstrated antigen-specific binding of the prepared complexes to GD2 positive murine T-cell lymphoma cells EL-4 and human neuroblastoma cells UKF-NB3, while no interaction with GD2 negative murine fibroblast cells NIH-3T3 was observed. These non-covalent polymer protein complexes represent a new generation of highly specific actively targeted polymer therapeutics or diagnostics.
31 P-magnetic resonance (MR) is an important diagnostic technique currently used for tissue metabolites assessing, but it also has great potential for visualizing the internal body structures. However, due to the low physiological level of phosphorus-containing biomolecules, precise imaging requires the administration of an exogenous probe. Herein, this work describes the synthesis and MR characterization of a pioneering metal-free 31 P-MR probe based on phosphorus-containing polymeric zwitterion. The developed probe (pTMPC) is a well-defined water-soluble macromolecule characterized by a high content of naturally rare phosphorothioate groups providing a high-intensity 31 P-MR signal clearly distinguishable from biological background both in vitro and in vitro. In addition, pTMPC can serve as a sensitive 31 P-MR sensor of pathological conditions in vivo because it undergoes oxidation-induced structural changes in the presence of reactive oxygen species (ROS). Add to this the favorable 1 H and 31 P T1 /T2 relaxation times and biocompatibility, pTMPC represents a conceptually new diagnostic, whose discovery opens up new possibilities in the field of 31 P-MR spectroscopy and imaging.
We present the MR properties of a novel bio-responsive phosphorus probe doped with iron for dual proton and phosphorus magnetic resonance imaging (1H/31P-MRI), which provide simultaneously complementary information. The probes consist of non-toxic biodegradable calcium phytate (CaIP6) nanoparticles doped with different amounts of cleavable paramagnetic Fe3+ ions. Phosphorus atoms in the phytate structure delivered an efficient 31P-MR signal, with iron ions altering MR contrast for both 1H and 31P-MR. The coordinated paramagnetic Fe3+ ions broadened the 31P-MR signal spectral line due to the short T2 relaxation time, resulting in more hypointense signal. However, when Fe3+ was decomplexed from the probe, relaxation times were prolonged. As a result of iron release, intensity of 1H-MR, as well as the 31P-MR signal increase. These 1H and 31P-MR dual signals triggered by iron decomplexation may have been attributable to biochemical changes in the environment with strong iron chelators, such as bacterial siderophore (deferoxamine). Analysing MR signal alternations as a proof-of-principle on a phantom at a 4.7 T magnetic field, we found that iron presence influenced 1H and 31P signals and signal recovery via iron chelation using deferoxamine.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Teicoplanin is a natural lipoglycopeptide antibiotic with a similar activity spectrum as vancomycin; however, it has with the added benefit to the patient of low cytotoxicity. Both teicoplanin and vancomycin antibiotics are actively used in medical practice in the prophylaxis and treatment of severe life-threatening infections caused by gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, Enterococcus faecium and Clostridium difficile. The expression of vancomycin Z (vanZ), encoded either in the vancomycin A (vanA) glycopeptide antibiotic resistance gene cluster or in the genomes of E. faecium, as well as Streptococcus pneumoniae and C. difficile, was shown to specifically compromise the antibiotic efficiency through the inhibition of teicoplanin binding to the bacterial surface. However, the exact mechanisms of this action and protein structure remain unknown. In this study, the three-dimensional structure of VanZ from E. faecium EnGen0191 was predicted by using the I-TASSER web server. Based on the VanZ structure, a benzimidazole based ligand was predicted to bind to the VanZ by molecular docking. Importantly, this new ligand, named G3K, was further confirmed to specifically inhibit VanZ-mediated resistance to teicoplanin in vivo.
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence účinky léků MeSH
- bakteriální proteiny metabolismus MeSH
- grampozitivní bakteriální infekce farmakoterapie MeSH
- grampozitivní bakterie účinky léků MeSH
- lidé MeSH
- lipoglykopeptidy farmakologie MeSH
- mikrobiální testy citlivosti metody MeSH
- simulace molekulového dockingu metody MeSH
- teikoplanin farmakologie MeSH
- vankomycin farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.
- MeSH
- B-lymfocyty imunologie MeSH
- COVID-19 imunologie MeSH
- dimerizace MeSH
- epitopy imunologie MeSH
- genové produkty env - virus lidské imunodeficience chemie genetika imunologie MeSH
- glykoprotein S, koronavirus imunologie MeSH
- glykosylace MeSH
- HIV infekce imunologie MeSH
- HIV protilátky imunologie MeSH
- HIV-1 imunologie MeSH
- imunoglobuliny - Fab fragmenty chemie imunologie MeSH
- lidé MeSH
- Macaca mulatta MeSH
- neutralizující protilátky imunologie MeSH
- polysacharidy chemie imunologie MeSH
- receptory antigenů B-buněk chemie MeSH
- SARS-CoV-2 imunologie MeSH
- široce neutralizující protilátky imunologie MeSH
- vakcíny imunologie MeSH
- virus opičí imunodeficience genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Mus musculus is the most commonly used animal model in microRNA research; however, little is known about the endogenous miRNome of the animals used in the miRNA-targeting preclinical studies with the human xenografts. In the presented study, we evaluated the NOD/SCID gamma mouse model for the preclinical study of systemic miR-215-5p substitution with a semitelechelic poly[N-(2-hydroxypropyl)-methacrylamide]-based carrier conjugated with miR-215-5p-mimic via a reductively degradable disulfide bond. Murine mmu-miR-215-5p and human hsa-miR-215-5p have a high homology of mature sequences with only one nucleotide substitution. Due to the high homology of hsa-miR-215-5p and mmu-hsa-miR-215-5p, a similar expression in human and NOD/SCID gamma mice was expected. Expression of mmu-miR-215 in murine organs did not indicate tissue-specific expression and was highly expressed in all examined tissues. All animals included in the study showed a significantly higher concentration of miR-215-5p in the blood plasma compared to human blood plasma, where miR-215-5p is on the verge of a reliable detection limit. However, circulating mmu-miR-215-5p did not enter the human xenograft tumors generated with colorectal cancer cell lines since the levels of miR-215-5p in control tumors remained notably lower compared to those originally transfected with miR-215-5p. Finally, the systemic administration of polymer-miR-215-5p-mimic conjugate to the tail vein did not increase miR-215-5p in NOD/SCID gamma mouse blood plasma, organs, and subcutaneous tumors. It was impossible to distinguish hsa-miR-215-5p and mmu-miR-215-5p in the murine blood and organs due to the high expression of endogenous mmu-miR-215-5p. In conclusion, the examination of endogenous tissue and circulating miRNome of an experimental animal model of choice might be necessary for future miRNA studies focused on the systemic delivery of miRNA-based drugs conducted in the animal models.
- MeSH
- lidé MeSH
- mikro RNA aplikace a dávkování genetika terapeutické užití MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední NOD MeSH
- myši SCID MeSH
- myši MeSH
- nosiče léků MeSH
- stanovení celkové genové exprese MeSH
- technika přenosu genů * MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
The study compared the physico-chemical and biological properties of a water-soluble star-like polymer nanomedicine with three micellar nanomedicines formed by self-assembly of amphiphilic copolymers differing in their hydrophobic part (statistical, block and thermosensitive block copolymers). All nanomedicines showed a pH-responsive release of the drug, independent on polymer structure. Significant penetration of all polymer nanomedicines into tumor cells in vitro was demonstrated, where the most pronounced effect was observed for statistical- or diblock copolymer-based micellar systems. Tumor accumulation in vivo was dependent on the stability of the nanomedicines in solution, being the highest for the star-like system, followed by the most stable micellar nanomedicines. The star-like polymer nanomedicine showed a superior therapeutic effect. Since the micellar systems exhibited slightly lower systemic toxicity, they may exhibit the same efficacy as the star-like soluble system when administered at equitoxic doses. In conclusion, treatment efficacy of studied nanomedicines was directly controlled by the drug pharmacokinetics, namely by their ability to circulate in the bloodstream for the time needed for effective accumulation in the tumor due to the enhanced permeability and retention (EPR) effect. Easy and scalable synthesis together with the direct reconstitution possibility for nanomedicine application made these nanomedicines excellent candidates for further clinical evaluation.