A tubular microdialysis probe is made from polysulfone hollow fibre for human haemodialysis, which has an inner diameter of 200 μm and a thickness of 20 μm. Milk is deposited to the outer surface of the hollow fibre and allowed to dry to form a dry sample. The tubular probe is then connected to the syringe pump and microdialysis of the dry sample into 0.5 mol/L HCl as acceptor is performed. 2.5 μL of microdialysate is obtained and analyzed for inorganic cations by capillary electrophoresis with contactless conductivity detection. Baseline separation of NH4+, K+, Ca2+, Na+, Mg2+, Li+ is achieved in 5.5 mol/L acetic acid as background electrolyte using a fused silica capillary with inner diameter of 25 μm and length of 31.5 cm. The reproducibility of dry sample microdialysis including CE analysis for peak area ranges from 2.4 to 3.9 % after normalization to Li+ as internal standard.
- MeSH
- elektroforéza kapilární * přístrojové vybavení metody MeSH
- kationty * analýza MeSH
- mikrodialýza * přístrojové vybavení metody MeSH
- mléko * chemie MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
Fasting induces significant shifts in substrate utilization with signs of acute insulin resistance (IR), while obesity is associated with chronic IR. Nonetheless, both states substantially influence adipose tissue (AT) function. Therefore, in this interventional study (NCT04260542), we investigated if excessive adiposity in premenopausal women alters insulin sensitivity and AT metabolic and endocrine activity in response to a 60-h fast and a subsequent 48-h refeeding period. Using physiological methods, lipidomics, and AT explants, we showed that obesity partially modified AT endocrine activity and blunted the dynamics of AT insulin resistance in response to the fasting/refeeding challenge compared to that observed in lean women. AT adapted to its own excess by reducing lipolytic activity/free fatty acids (FFA) flux per mass. This adaptation persisted even after a 60-h fast, resulting in lower ketosis in women with obesity. This could be a protective mechanism that limits the lipotoxic effects of FFA; however, it may ultimately impede desirable weight loss induced by caloric restriction in women with obesity.
- Publikační typ
- časopisecké články MeSH
AIMS/HYPOTHESIS: The aim of this substudy (Eudra CT No:2019-001997-27)was to assess ATB availability in patients with infected diabetic foot ulcers(IDFUs)in the context of microcirculation and macrocirculation status. METHODS: For this substudy, we enrolled 23 patients with IDFU. Patients were treated with boluses of amoxicillin/clavulanic acid(AMC)(12patients) or ceftazidime(CTZ)(11patients). After induction of a steady ATB state, microdialysis was performed near the IDFU. Tissue fluid samples from the foot and blood samples from peripheral blood were taken within 6 hours. ATB potential efficacy was assessed by evaluating the maximum serum and tissue ATB concentrations(Cmax and Cmax-tissue)and the percentage of time the unbound drug tissue concentration exceeds the minimum inhibitory concentration (MIC)(≥100% tissue and ≥50%/60% tissue fT>MIC). Vascular status was assessed by triplex ultrasound, ankle-brachial and toe-brachial index tests, occlusive plethysmography comprising two arterial flow phases, and transcutaneous oxygen pressure(TcPO2). RESULTS: Following bolus administration, the Cmax of AMC was 91.8 ± 52.5 μgmL-1 and the Cmax-tissue of AMC was 7.25 ± 4.5 μgmL-1(P<0.001). The Cmax for CTZ was 186.8 ± 44.1 μgmL-1 and the Cmax-tissue of CTZ was 18.6 ± 7.4 μgmL-1(P<0.0001). Additionally, 67% of patients treated with AMC and 55% of those treated with CTZ achieved tissue fT>MIC levels exceeding 50% and 60%, respectively. We observed positive correlations between both Cmax-tissue and AUCtissue and arterial flow. Specifically, the correlation coefficient for the first phase was r=0.42; (P=0.045), and for the second phase, it was r=0.55(P=0.01)and r=0.5(P=0.021). CONCLUSIONS: Bactericidal activity proved satisfactory in only half to two-thirds of patients with IDFUs, an outcome that appears to correlate primarily with arterial flow.
- MeSH
- antibakteriální látky * farmakokinetika aplikace a dávkování terapeutické užití MeSH
- diabetická noha * farmakoterapie metabolismus MeSH
- intravenózní podání MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrocirkulace * účinky léků MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The availability of dialysis membranes in the form of hollow fibres with diameters compatible with the fused silica capillaries used in capillary electrophoresis is very limited. However, haemodialysis bicarbonate cartridges commonly used in human medicine containing polysulfone hollow fibres are available on the market and are used for the fabrication of coaxial microdialysis probes. The miniature probe design ensures that steady-state conditions are achieved during microdialysis of minimal volumes of body fluids. RESULTS: A coaxial microdialysis probe with a length of 5 cm and an inner diameter of 200 μm is used for microdialysis of 10 μL of body fluid collected into a sampling fused silica capillary with an inner diameter 430 μm. Microdialysis is performed into 0.01 M HCl as a perfusate at stopped flow and 2 μL of the resulting microdialysate are subjected to analysis by capillary electrophoresis with contactless conductivity detection. Microdialysis pre-treatment is verified by analysis of 11 common amino acids at a 100 μM concentration level, resulting in recoveries of 98.3-102.5%. The electrophoretic separation of amino acids is performed in 8.5 M acetic acid at pH 1.37 as a background electrolyte with analysis time up to 4.5 min and LOD in the range of 0.12-0.28 μM. The reproducibility of the developed technique determined for the peak area ranges from 1.2 to 4.5%. Applicability is tested in the quantification of valine and leucine in plasma during fasting and subsequent reconvalescence. SIGNIFICANCE: The fabrication of a coaxial microdialysis probe for the laboratory preparation of microliter volumes of various types of clinical samples is described, which is coupled off-line with capillary electrophoretic monitoring of amino acids in 2 μL volumes of microdialysate. The developed methodology is suitable for quantification of 20 amino acids in whole human blood, plasma, tears and has potential for analysis of dry blood spots captured on hollow fibre.
- MeSH
- aminokyseliny * MeSH
- elektroforéza kapilární MeSH
- lidé MeSH
- mikrodialýza MeSH
- oxid křemičitý MeSH
- reprodukovatelnost výsledků MeSH
- tělesné tekutiny * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A miniature probe for electromembrane extraction is developed and constructed. The tubular probe with an internal volume of 1.1 μL is made of polypropylene hollow fiber with a supported liquid membrane of 85% nitrophenyloctyl ether (NPOE) with 15% bis(2-ethylhexyl)phosphonic acid (DEHP). The probe is connected on-line to the electrophoresis with short separation capillary via an air assisted flow gating interface cast from poly (dimethylsiloxane). The compact instrument is computer controlled via LabView. The probe parameters are tested for extraction of creatinine and basic amino acids from artificial solution and human urine. The sensitivity of the electrophoretic determination after 300 s extraction at 150 V compared to the sensitivity without extraction is 4.9-fold and 2.6-fold higher for creatinine and arginine, respectively. The RSDs for peak area measured from 5 repeated extractions of 50 μM solutions are 7.5%, 7.2%, 8.6% and 9.2% for Crea, Lys, Arg and His, respectively. The probe can be used for all-day measurements. The preparation of the probe is simple and requires no special tool.
BACKGROUND: COVID-19, an infectious disease caused by SARS-CoV-2, was shown to be associated with an increased risk of new-onset diabetes. Mechanisms contributing to the development of hyperglycemia are still unclear. We aimed to study whether hyperglycemia is related to insulin resistance and/or beta cell dysfunction. MATERIALS AND METHODS: Survivors of severe COVID-19 but without a known history of diabetes were examined at baseline (T0) and after 3 (T3) and 6 (T6) months: corticosteroids use, indirect calorimetry, and OGTT. Insulin response and sensitivity (IS) were expressed as insulinogenic (IGI), disposition (DI), and Matsuda insulin sensitivity index (ISI). Resting energy expenditure (REE) and respiratory quotient (RQ) was calculated from the gas exchange and nitrogen losses. RESULTS: 26 patients (out of 37) with complete outcome data were included in the analysis (age ~59.0 years; BMI ~ 30.4, 35% women). Patients were hypermetabolic at T0 (30.3 ± 4.0 kcal/kg lean mass/day, ~120% predicted) but REE declined over 6 months (ΔT6-T0 mean dif. T6-T0 (95% CI): -5.4 (-6.8, -4.1) kcal/kg FFM/day, p < 0.0001). 17 patients at T0 and 13 patients at T6 had hyperglycemia. None of the patients had positive islet autoantibodies. Insulin sensitivity in T0 was similarly low in hyperglycemic (H) and normoglycemic patients (N) (T0 ISIH = 3.12 ± 1.23, ISIN = 3.47 ± 1.78, p = 0.44), whereas insulin response was lower in the H group (DIH = 3.05 ± 1.79 vs DIN = 8.40 ± 5.42, p = 0.003). Over 6 months ISI (ΔT6-T0 mean dif. T6-T0 for ISI (95% CI): 1.84 (0.45, 3.24), p = 0.01)) increased in the H group only. CONCLUSIONS: Patients with severe COVID-19 had increased REE and insulin resistance during the acute phase due to the infection and corticosteroid use, but these effects do not persist during the follow-up period. Only patients with insufficient insulin response developed hyperglycemia, indicating that beta cell dysfunction, rather than insulin resistance, was responsible for its occurrence.
- MeSH
- COVID-19 * komplikace MeSH
- hyperglykemie * MeSH
- inzulin MeSH
- inzulinová rezistence * fyziologie MeSH
- krevní glukóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- prospektivní studie MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
The review presents an evaluation of the development of on-line, at-line and in-line sample treatment coupled with capillary and microchip electrophoresis over the last 10 years. In the first part, it describes different types of flow-gating interfaces (FGI) such as cross-FGI, coaxial-FGI, sheet-flow-FGI, and air-assisted-FGI and their fabrication using molding into polydimethylsiloxane and commercially available fittings. The second part deals with the coupling of capillary and microchip electrophoresis with microdialysis, solid-phase, liquid-phase, and membrane based extraction techniques. It mainly focuses on modern techniques such as extraction across supported liquid membrane, electroextraction, single drop microextraction, head space microextraction, and microdialysis with high spatial and temporal resolution. Finally, the design of sequential electrophoretic analysers and fabrication of SPE microcartridges with monolithic and molecularly imprinted polymeric sorbents are discussed. Applications include the monitoring of metabolites, neurotransmitters, peptides and proteins in body fluids and tissues to study processes in living organisms, as well as the monitoring of nutrients, minerals and waste compounds in food, natural and wastewater.
- MeSH
- elektroforéza kapilární metody MeSH
- elektroforéza mikročipová * metody MeSH
- mikrodialýza MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Diabetic foot is a serious late complication frequently caused by infection and ischaemia. Both require prompt and aggressive treatment to avoid lower limb amputation. The effectiveness of peripheral arterial disease therapy can be easily verified using triplex ultrasound, ankle-brachial/toe-brachial index examination, or transcutaneous oxygen pressure. However, the success of infection treatment is difficult to establish in patients with diabetic foot. Intravenous systemic antibiotics are recommended for the treatment of infectious complications in patients with moderate or serious stages of infection. Antibiotic therapy should be initiated promptly and aggressively to achieve sufficient serum and peripheral antibiotic concentrations. Antibiotic serum levels are easily evaluated by pharmacokinetic assessment. However, antibiotic concentrations in peripheral tissues, especially in diabetic foot, are not routinely detectable. This review describes microdialysis techniques that have shown promise in determining antibiotic levels in the surroundings of diabetic foot lesions.
- MeSH
- amputace MeSH
- antibakteriální látky terapeutické užití MeSH
- diabetes mellitus * farmakoterapie MeSH
- diabetická noha * diagnóza farmakoterapie MeSH
- dolní končetina patologie MeSH
- lidé MeSH
- mikrodialýza škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH