Arthroderma is the most diverse genus among dermatophytes encompassing species occurring in soil, caves, animal burrows, clinical material and other environments. In this study, we collected ex-type, reference and authentic strains of all currently accepted Arthroderma species and generated sequences of three highly variable loci (ITS rDNA, β-tubulin, and translation elongation factor 1-α). The number of accepted species was expanded to 27. One novel species, A. melbournense (ex-type strain CCF 6162T = CBS 145858T), is described. This species was isolated from toenail dust collected by a podiatrist in Melbourne, during an epidemiological study of four geographical regions of Eastern Australia. Trichophyton terrestre, Chrysosporium magnisporum, and Chrysosporium oceanitis are transferred to Arthroderma. Typification is provided for T. terrestre that is not conspecific with any of the supposed biological species from the former T. terrestre complex, that is, A. insingulare, A. lenticulare and A. quadrifidum. A multi-gene phylogeny and reference sequences provided in this study should serve as a basis for future phylogenetic studies and facilitate species identification in practice.LAY ABSTRACT: The genus Arthroderma encompasses geophilic dermatophyte species that infrequently cause human and animal superficial infections. Reference sequences from three genetic loci were generated for all currently accepted Arthroderma species and phylogeny was constructed. Several taxonomic novelties are introduced. The newly provided data will facilitate species identification and future taxonomic studies.
- MeSH
- Arthrodermataceae klasifikace genetika MeSH
- DNA fungální genetika MeSH
- elongační faktor 1 genetika MeSH
- fylogeneze * MeSH
- geny hub genetika MeSH
- lidé MeSH
- mezerníky ribozomální DNA genetika MeSH
- Microsporum klasifikace genetika MeSH
- Trichophyton klasifikace genetika MeSH
- tubulin genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Austrálie MeSH
The most recent genome-editing system called CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat system with associated protein 9-nuclease) was employed to delete four non-essential genes (i.e., Caeco1, Caidh1, Carom2, and Cataf10) individually to establish their gene functionality annotations in pathogen Candida albicans. The biological roles of these genes were investigated with respect to the cell wall integrity and biogenesis, calcium/calcineurin pathways, susceptibility of mutants towards temperature, drugs and salts. All the mutants showed increased vulnerability compared to the wild-type background strain towards the cell wall-perturbing agents, (antifungal) drugs and salts. All the mutants also exhibited repressed and defective hyphal growth and smaller colony size than control CA14. The cell cycle of all the mutants decreased enormously except for those with Carom2 deletion. The budding index and budding size also increased for all mutants with altered bud shape. The disposition of the mutants towards cell wall-perturbing enzymes disclosed lower survival and more rapid cell wall lysis events than in wild types. The pathogenicity and virulence of the mutants was checked by adhesion assay, and strains lacking rom2 and eco1 were found to possess the least adhesion capacity, which is synonymous to their decreased pathogenicity and virulence.
- MeSH
- acetyltransferasy nedostatek genetika fyziologie MeSH
- antifungální látky farmakologie MeSH
- buněčná adheze MeSH
- buněčná stěna účinky léků MeSH
- buněčný cyklus MeSH
- Candida albicans účinky léků genetika patogenita fyziologie MeSH
- chitinasy farmakologie MeSH
- CRISPR-Cas systémy MeSH
- delece genu MeSH
- endo-1,3-beta-glukanasa farmakologie MeSH
- faktory asociované s proteinem vázajícím TATA box nedostatek genetika fyziologie MeSH
- fungální proteiny genetika fyziologie MeSH
- geny hub * MeSH
- hyfy růst a vývoj MeSH
- isocitrátdehydrogenasa nedostatek genetika fyziologie MeSH
- kationty farmakologie MeSH
- nepohlavní rozmnožování MeSH
- otevřené čtecí rámce MeSH
- poškození DNA MeSH
- vápník fyziologie MeSH
- virulence genetika MeSH
- Publikační typ
- časopisecké články MeSH
Claviceps paspali is used in the pharmaceutical industry for the production of ergot alkaloids. This fungus also biosynthesizes paspalitrems, indole diterpene (IDT) mycotoxins that cause significant economic losses in agriculture and represent safety concerns for ergot alkaloid manufacture. Here, we use Agrobacterium-mediated transformation to replace the idtP and the idtF genes in the IDT biosynthetic gene cluster of C. paspali with a selectable marker gene. We show that the ΔidtP knockout mutant produces paspaline, the first IDT intermediate of the pathway. The ΔidtF strain produces unprenylated IDTs such as paspalinine and paspaline. These experiments validate the function of idtP as the gene encoding the cytochrome P450 monooxygenase that oxidizes and demethylates paspaline to produce 13-desoxypaxilline, and that of idtF as the gene that encodes the α-prenyltransferase that prenylates paspalinine at the C20 or the C21 positions to yield paspalitrems A and C, respectively. In addition, we also show that axenic cultures of the wild type, the ΔidtP and the ΔidtF mutant C. paspali strains fail to produce an assembly of IDTs that are present in C. paspali-Paspalum spp. associations.
Aspergillus section Nidulantes encompasses almost 80 homothallic and anamorphic species, mostly isolated from soil, plant material, or the indoor environment. Some species are clinically relevant or produce mycotoxins. This study reevaluated the species boundaries within several clades of section Nidulantes. Five data sets were assembled, each containing presumptive new species and their closest relatives, and phylogenetic and phenotypic analyses were performed. We tested the hypotheses that the newly isolated or reexamined strains constitute separate species (splitting approach) or should be treated as part of broadly defined species (lumping approach). Four DNA sequence loci were amplified, internal transcribed spacer (ITS) and large subunit (LSU) regions of the rDNA and partial sequences of the β-tubulin (benA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2) genes. The latter three loci were used for the phylogenetic analysis and served as input for single-locus (GMYC, bGMYC, PTP, and bPTP) and multilocus (STACEY and BP&P) species delimitation analyses. The phenotypic analysis comprised macro- and micromorphology (including scanning electron microscopy) and comparison of cardinal growth temperatures. The phylogenetic analysis supported the splitting hypothesis in all cases, and based on the combined approach, we propose six new species, four that are homothallic and two anamorphic. Four new species were isolated from the indoor environment (Jamaica, Trinidad and Tobago, USA), one originated from soil (Australia), and one from a kangaroo rat cheek pouch (USA).
- MeSH
- Aspergillus * klasifikace cytologie genetika izolace a purifikace MeSH
- fylogeneze MeSH
- geny hub MeSH
- multilokusová sekvenční typizace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
- Jamajka MeSH
- Spojené státy americké MeSH
- Trinidad a Tobago MeSH
Pneumocystis is a genus of parasitic fungi infecting lung tissues in a wide range of mammal species, displaying a strong host specificity and patterns of co-speciation with their hosts. However, a recent study on Asiatic murids challenged these patterns reporting several Pneumocystis lineages/species shared by different host species or even genera in the Rattini and Murini tribes. Here we screened lung samples of 27 species of African rodents from five families for the presence of Pneumocystis DNA. Using reconstructed multi-locus phylogenies of both hosts and parasites, we tested the hypothesis of their co-evolution. We found that Pneumocystis is widespread in African rodents, detected in all but seven screened host species, with species-level prevalence ranging from 5.9 to 100%. Several host species carry pairs of highly divergent Pneumocystis lineages/species. The retrieved co-phylogenetic signal was highly significant (p = .0017). We found multiple co-speciations, sorting events and two host-shift events, which occurred between Murinae and Deomyinae hosts. Comparison of genetic distances suggests higher substitution rates for Pneumocystis relative to the rodent hosts on neutral loci and slower rates on selected ones. We discuss life-history traits and population dynamics factors which could explain the observed results.
- MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- geny hub MeSH
- interakce hostitele a patogenu MeSH
- Muridae mikrobiologie MeSH
- plíce mikrobiologie MeSH
- Pneumocystis klasifikace genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
URA5-RFLP is one of the most widely used genotyping methods relating to Cryptococcus neoformans and C. gattii consensus genotype nomenclature. In order to identify a molecular type, this method uses a visual comparison of digested PCR products of tested and reference strains, therefore any anomaly in RFLP patterns of studied isolates makes recognition difficult or impossible. This report describes a strain of VNIV type showing an atypical URA5-RFLP pattern as well as a group of AD hybrids displaying the same anomaly. The atypical RFLP pattern is the result of a point mutation and emergence of a new restriction site. Emergence of the allele presenting a new banding pattern may lead to misidentification using the URA5-RFLP technique; the results of this study as well as the literature data may suggest the spread of the allele in the environment.
- MeSH
- Cryptococcus neoformans klasifikace genetika MeSH
- genotyp MeSH
- geny hub genetika MeSH
- mikrobiologie životního prostředí MeSH
- mutace MeSH
- mykologické určovací techniky MeSH
- orotátfosforibosyltransferasa genetika MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
Farnesol (FAR) has already demonstrated an inhibitory effect on Candida albicans biofilm. The aim of this work was to determine the effectiveness of externally added FAR in combination with fluconazole (FLC) on Candida albicans biofilm and on regulation of the ergosterol genes ERG20, ERG9, and ERG11. The effectiveness of compounds was determined by MTT assay and evaluated by the minimal inhibitory concentrations reducing a sessile biofilm to 50% activity (0.5 μg/mL and 200 μmol/L for FLC and FAR, respectively). These concentrations as well as 30 and 100 μmol/L FAR were selected for a study of the effectiveness of the FAR/FLC combination. The reduction in biofilm robustness mainly caused by the presence of 200 μmol/L FAR-alone or in combination with FLC-was accompanied by a significant inhibition of the yeast-to-hyphae transition that was observed by light microscopy and CLSM. Results from qRT-PCR indicated that while 30 μmol/L FAR only slightly regulated the expression of all 3 genes in the 48-h biofilm, the presence of 200 μmol/L FAR downregulated all the tested genes. However, the addition of 0.5 μg/mL of FLC to the samples with 200 μmol/L FAR restored the downregulation of the ERG20 and ERG11 genes to the control level. Moreover, the gene ERG9 was slightly upregulated. In summary, FAR acted via multiple effects on the C. albicans biofilm, but only a higher concentration of FAR proved to be effective.
- MeSH
- antifungální látky farmakologie MeSH
- biofilmy účinky léků růst a vývoj MeSH
- Candida albicans účinky léků růst a vývoj MeSH
- ergosterol genetika metabolismus MeSH
- farnesol farmakologie MeSH
- flukonazol farmakologie MeSH
- geny hub genetika MeSH
- hyfy účinky léků MeSH
- metabolické sítě a dráhy účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- regulace genové exprese u hub účinky léků MeSH
- synergismus léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Publikační typ
- časopisecké články MeSH
Natural Saccharomyces cerevisiae isolates from vineyards in the Western Cape, South Africa were evaluated for ethanol production in industrial conditions associated with the production of second-generation biofuels. The strains displayed high phenotypic diversity including the ability to grow at 45 °C and in the presence of 20% (v/v) ethanol, strain YI13. Strains HR4 and YI30 were inhibitor-tolerant under aerobic and oxygen-limited conditions, respectively. Spore-to-spore hybridization generated progeny that displayed heterosis, including increased ethanol productivity and improved growth in the presence of a synthetic inhibitor cocktail. Hybrid strains HR4/YI30#6 and V3/YI30#6 were able to grow at a high salt concentration (2 mol/L NaCl) with V3/YI30#6 also able to grow at a high temperature (45 °C). Strains HR4/YI30#1 and #3 were inhibitor-tolerant, with strain HR4/YI30#3 having similar productivity (0.36 ± 0.0036 g/L per h) as the superior parental strain, YI30 (0.35 ± 0.0058 g/L per h). This study indicates that natural S. cerevisiae strains display phenotypic variation and heterosis can be achieved through spore-to-spore hybridization. Several of the phenotypes (temperature-, osmo-, and inhibitor tolerance) displayed by both the natural strains and the generated progeny were at the maximum conditions reported for S. cerevisiae strains.
- MeSH
- ethanol metabolismus MeSH
- fermentace MeSH
- fungální geny pro párovací typ MeSH
- glukosa metabolismus MeSH
- lignin metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Jihoafrická republika MeSH
Ribosomal protein genes (RPGs) in Saccharomyces cerevisiae are a remarkable regulatory group that may serve as a model for understanding genetic redundancy in evolutionary adaptations. Most RPGs exist as pairs of highly conserved functional paralogs with divergent untranslated regions and introns. We examined the roles of introns in strains with various combinations of intron and gene deletions in RPL22, RPL2, RPL16, RPL37, RPL17, RPS0, and RPS18 paralog pairs. We found that introns inhibited the expression of their genes in the RPL22 pair, with the RPL22B intron conferring a much stronger effect. While the WT RPL22A/RPL22B mRNA ratio was 93/7, the rpl22aΔi/RPL22B and RPL22A/rpl22bΔi ratios were >99/<1 and 60/40, respectively. The intron in RPL2A stimulated the expression of its own gene, but the removal of the other introns had little effect on expression of the corresponding gene pair. Rpl22 protein abundances corresponded to changes in mRNAs. Using splicing reporters containing endogenous intron sequences, we demonstrated that these effects were due to the inhibition of splicing by Rpl22 proteins but not by their RNA-binding mutant versions. Indeed, only WT Rpl22A/Rpl22B proteins (but not the mutants) interacted in a yeast three-hybrid system with an RPL22B intronic region between bp 165 and 236. Transcriptome analysis showed that both the total level of Rpl22 and the A/B ratio were important for maintaining the WT phenotype. The data presented here support the contention that the Rpl22B protein has a paralog-specific role. The RPL22 singleton of Kluyveromyces lactis, which did not undergo whole genome duplication, also responded to Rpl22-mediated inhibition in K. lactis cells. Vice versa, the overproduction of the K. lactis protein reduced the expression of RPL22A/B in S. cerevisiae. The extraribosomal function of of the K. lactis Rpl22 suggests that the loop regulating RPL22 paralogs of S. cerevisiae evolved from autoregulation.