Charge functionalization
Dotaz
Zobrazit nápovědu
The pro-apoptotic proteins Bax and Bak are essential for executing programmed cell death (apoptosis), yet the mechanism of their activation is not properly understood at the structural level. For the first time in cell death research, we calculated intra-protein charge transfer in order to study the structural alterations and their functional consequences during Bax activation. Using an electronegativity equalization model, we investigated the changes in the Bax charge profile upon activation by a functional peptide of its natural activator protein, Bim. We found that charge reorganizations upon activator binding mediate the exposure of the functional sites of Bax, rendering Bax active. The affinity of the Bax C-domain for its binding groove is decreased due to the Arg94-mediated abrogation of the Ser184-Asp98 interaction. We further identified a network of charge reorganizations that confirms previous speculations of allosteric sensing, whereby the activation information is conveyed from the activation site, through the hydrophobic core of Bax, to the well-distanced functional sites of Bax. The network was mediated by a hub of three residues on helix 5 of the hydrophobic core of Bax. Sequence and structural alignment revealed that this hub was conserved in the Bak amino acid sequence, and in the 3D structure of folded Bak. Our results suggest that allostery mediated by charge transfer is responsible for the activation of both Bax and Bak, and that this might be a prototypical mechanism for a fast activation of proteins during signal transduction. Our method can be applied to any protein or protein complex in order to map the progress of allosteric changes through the proteins' structure.
- MeSH
- alosterická regulace MeSH
- apoptóza fyziologie MeSH
- biologické modely MeSH
- interakční proteinové domény a motivy MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- počítačová simulace MeSH
- protein Bak chemie genetika metabolismus MeSH
- protein X asociovaný s bcl-2 chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- statická elektřina MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
Oligonucleotides conduct electric charge via various mechanisms and their characterization and understanding is a very important and complicated task. In this work, experimental (temperature dependent steady state fluorescence spectroscopy, time-resolved fluorescence spectroscopy) and theoretical (Density Functional Theory) approaches were combined to study charge transfer processes in short DNA/DNA and RNA/DNA duplexes with virtually equivalent sequences. The experimental results were consistent with the theoretical model - the delocalized nature of HOMO orbitals and holes, base stacking, electronic coupling and conformational flexibility formed the conditions for more effective short distance charge transfer processes in RNA/DNA hybrids. RNA/DNA and DNA/DNA charge transfer properties were strongly connected with temperature affected structural changes of molecular systems - charge transfer could be used as a probe of even tiny changes of molecular structures and settings.
We propose a label-free biosensor concept based on the charge state manipulation of nitrogen-vacancy (NV) quantum color centers in diamond, combined with an electrochemical microfluidic flow cell sensor, constructed on boron-doped diamond. This device can be set at a defined electrochemical potential, locking onto the particular chemical reaction, whilst the NV center provides the sensing function. The NV charge state occupation is initially prepared by applying a bias voltage on a gate electrode and then subsequently altered by exposure to detected charged molecules. We demonstrate the functionality of the device by performing label-free optical detection of DNA molecules. In this experiment, a monolayer of strongly cationic charged polymer polyethylenimine is used to shift the charge state of near surface NV centers from negatively charged NV- to neutral NV0 or dark positively charged NV+. Immobilization of negatively charged DNA molecules on the surface of the sensor restores the NV centers charge state back to the negatively charged NV-, which is detected using confocal photoluminescence microscopy. Biochemical reactions in the microfluidic channel are characterized by electrochemical impedance spectroscopy. The use of the developed electrochemical device can also be extended to nuclear magnetic resonance spin sensing.
This study presents a toxicological evaluation of two types of carbon dots (CD), similar in size (<10 nm) but differing in surface charge. Whole-genome mRNA and miRNA expression (RNAseq), as well as gene-specific DNA methylation changes, were analyzed in human embryonic lung fibroblasts (HEL 12469) after 4 h and 24 h exposure to concentrations of 10 and 50 µg/mL (for positive charged CD; pCD) or 10 and 100 µg/mL (for negative charged CD, nCD). The results showed a distinct response for the tested nanomaterials (NMs). The exposure to pCD induced the expression of a substantially lower number of mRNAs than those to nCD, with few commonly differentially expressed genes between the two CDs. For both CDs, the number of deregulated mRNAs increased with the dose and exposure time. The pathway analysis revealed a deregulation of processes associated with immune response, tumorigenesis and cell cycle regulation, after exposure to pCD. For nCD treatment, pathways relating to cell proliferation, apoptosis, oxidative stress, gene expression, and cycle regulation were detected. The expression of miRNAs followed a similar pattern: more pronounced changes after nCD exposure and few commonly differentially expressed miRNAs between the two CDs. For both CDs the pathway analysis based on miRNA-mRNA interactions, showed a deregulation of cancer-related pathways, immune processes and processes involved in extracellular matrix interactions. DNA methylation was not affected by exposure to any of the two CDs. In summary, although the tested CDs induced distinct responses on the level of mRNA and miRNA expression, pathway analyses revealed a potential common biological impact of both NMs independent of their surface charge.
- MeSH
- apoptóza účinky léků genetika MeSH
- exprese genu účinky léků genetika MeSH
- extracelulární matrix genetika MeSH
- fibroblasty účinky léků MeSH
- kultivované buňky MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- metylace DNA účinky léků genetika MeSH
- mikro RNA genetika MeSH
- nádory genetika MeSH
- oxidační stres účinky léků genetika MeSH
- plíce účinky léků MeSH
- proliferace buněk účinky léků genetika MeSH
- signální transdukce účinky léků genetika MeSH
- stanovení celkové genové exprese metody MeSH
- uhlík farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The literature reports on cationic and anionic phthalocyanines (Pcs) for photodynamic therapy suggest systematically significant differences in activity. In this work, ten different zinc(II) Pcs with carboxylate functions or quaternary nitrogens (hydrophilic anionic, hydrophilic cationic, amphiphilic anionic, and amphiphilic cationic) were investigated, with the aim of revealing reasons for such differences. In vitro assays on HeLa, MCF-7, and HCT-116 cells confirmed higher photoactivity for cationic Pcs (EC50 ∼ 3-50 nM) than for anionic Pcs (EC50 ∼ 0.3-10 μM), the latter being additionally significantly more active in serum-free medium. The environmental pH, binding to serum proteins, interaction with biomembranes, differences in subcellular localization, and relocalization after irradiation were found to be the main factors contributing to the generally lower photoactivity of anionic Pcs than that of the cationic derivatives. This result is not limited only to the presented derivatives and should be considered in the design of novel photosensitizers.
- MeSH
- fosfatidylcholiny chemie metabolismus MeSH
- fotochemoterapie MeSH
- fotosenzibilizující látky chemická syntéza metabolismus farmakologie účinky záření MeSH
- indoly chemická syntéza metabolismus farmakologie účinky záření MeSH
- lidé MeSH
- liposomy chemie metabolismus MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- protinádorové látky chemická syntéza metabolismus farmakologie účinky záření MeSH
- screeningové testy protinádorových léčiv MeSH
- sérový albumin hovězí metabolismus MeSH
- singletový kyslík metabolismus MeSH
- světlo MeSH
- zinek chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The number of charges and/or organic ligands covalently attached to the surface of CdTe quantum dot nanoparticles has been determined from their electrophoretic mobilities measured in capillaries filled with free electrolyte buffers. Three sizes of water soluble CdTe quantum dots with 3-mercaptopropionic and thioglycolic acids as surface ligands were prepared. Their electrophoretic mobilities in different pH and ionic strength values of separation buffers were measured by capillary electrophoresis with laser induced fluorescence detection. The ζ-potentials determined from electrophoretic mobilities using analytical solution of Henry function proposed by Ohshima were in the range from -30 to -100 mV. Charges of QDs were calculated from ζ-potentials. As a result, numbers of organic ligands bonded to QDs surface were determined to be 13, 14, and 15 for the sizes of 3.1, 3.5, and 3.9 nm, respectively. The dissociation constants of organic ligands bonded on QDs surfaces estimated from the dependence of QDs charge on pH of the separation buffer were 7.8 and 7.9 for 3-mercaptopropionic acid and 6.9 for thioglycolic acid.
- MeSH
- elektroforéza kapilární metody MeSH
- koncentrace vodíkových iontů MeSH
- kvantové tečky chemie MeSH
- kyselina 3-merkaptopropionová MeSH
- organické látky chemie MeSH
- osmolární koncentrace MeSH
- povrchové vlastnosti MeSH
- rozpustnost MeSH
- statická elektřina MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Endothelial cell (EC) glycocalyx (GLX) comprise a multicomponent layer of proteoglycans and glycoproteins. Alteration of its integrity contributes to chronic vascular inflammation and leads to the development of cardiovascular diseases. Myeloperoxidase (MPO), a highly abundant enzyme released by polymorphonuclear neutrophils, binds to the GLX and deleteriously affects vascular EC functions. The focus of this study was to elucidate the mechanisms of MPO-mediated alteration of GLX molecules, and to unravel subsequent changes in endothelial integrity and function. MPO binding to GLX of human ECs and subsequent internalization was mediated by cell surface heparan sulfate chains. Moreover, interaction of MPO, which is carrying a cationic charge, with anionic glycosaminoglycans (GAGs) resulted in reduction of their relative charge. By means of micro-viscometry and atomic force microscopy, we disclosed that MPO can crosslink GAG chains. MPO-dependent modulation of GLX structure was further supported by alteration of wheat germ agglutinin staining. Increased expression of ICAM-1 documented endothelial cell activation by both catalytically active and also inactive MPO. Furthermore, MPO increased vascular permeability connected with reorganization of intracellular junctions, however, this was dependent on MPO's catalytic activity. Novel proteins interacting with MPO during transcytosis were identified by proteomic analysis. Altogether, these findings provide evidence that MPO through interaction with GAGs modulates overall charge of the GLX, causing modification of its structure and thus affecting EC function. Importantly, our results also suggest a number of proteins interacting with MPO that possess a variety of cellular localizations and functions.
- MeSH
- cévní endotel MeSH
- endoteliální buňky MeSH
- lidé MeSH
- neutrofily MeSH
- peroxidasa * MeSH
- proteomika * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Photosystem II (PSII) is a multi-subunit pigment-protein complex and is one of several protein assemblies that function cooperatively in photosynthesis in plants and cyanobacteria. As more structural data on PSII become available, new questions arise concerning the nature of the charge separation in PSII reaction center (RC). The crystal structure of PSII RC from cyanobacteria Thermosynechococcus vulcanus was selected for the computational study of conformational changes in photosystem II associated to the charge separation process. The parameterization of cofactors and lipids for classical MD simulation with Amber force field was performed. The parametrized complex of PSII was embedded in the lipid membrane for MD simulation with Amber in Gromacs. The conformational behavior of protein and the cofactors directly involved in the charge separation were studied by MD simulations and QM/MM calculations. This study identified the most likely mechanism of the proton-coupled reduction of plastoquinone QB. After the charge separation and the first electron transfer to QB, the system undergoes conformational change allowing the first proton transfer to QB- mediated via Ser264. After the second electron transfer to QBH, the system again adopts conformation allowing the second proton transfer to QBH-. The reduced QBH2 would then leave the binding pocket.
Lone pair-π interactions are now recognized as a supramolecular bond whose existence in biological systems is documented by a growing number of examples. They are commonly attributed to electrostatic forces. This review attempts to highlight some recent discoveries evidencing the important role which lone pair-π interactions, and anion-π interactions in particular, play in stabilizing the structure and affecting the function of biomolecules. Special attention is paid to studies exploring the physical origin of these at first glance counterintuitive interactions between a lone pair of electrons of one residue and the π-cloud of another. Recent theoretical work went beyond the popular electrostatic model and inquired the extent to which orbital interactions have to be taken into account. In at least one biologically relevant case-that of anion-flavin interactions-a substantial charge-transfer component has been shown to operate.
- MeSH
- biofyzika * MeSH
- elektrony * MeSH
- molekulární modely MeSH
- statická elektřina MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The l-alanyl-l-alanine (AA) molecule behaves differently in acidic, neutral, and basic environments. Because of its molecular flexibility and strong interaction with the aqueous environment, its behavior has to be deduced from the NMR spectra indirectly, using statistical methods and comparison with ab initio predictions of geometric and spectral parameters. In this study, chemical shifts and indirect spin-spin coupling constants of the AA cation, anion, and zwitterion were measured and compared to values obtained by density functional computations for various conformers of the dipeptide. The accuracy and sensitivity of the quantum methods to the molecular charge was also tested on the (mono)-alanine molecule. Probable AA conformers could be identified at two-dimensional potential energy surfaces and verified by the comparison of the computed parameters with measured NMR data. The results indicate that, whereas the main-chain peptide conformations of the cationic (AA+) and zwitterionic (AAZW) forms are similar, the anion (AA-) adopts also another, approximately equally populated conformer in the aqueous solution. Additionally, the NH2 group can rotate in the two main chain conformations of the anionic form AA-. According to a vibrational quantum analysis of the two-dimensional energy surfaces, higher-energy conformers might exist for all three charged AA forms but cannot be detected directly by NMR spectroscopy because of their small populations and short lifetimes. In accord with previous studies, the NMR parameters, particularly the indirect nuclear spin-spin coupling constants, often provided an excellent probe of a local conformation. Generalization to peptides and proteins, however, has to take into account the environment, molecular charge, and flexibility of the peptide chain.