To bypass the resistance to conventional chemotherapy, attention is paid to the inhibition of alternative targets such as members of the DNA damage response pathway. In the present study, we performed a three-step virtual screening of potential ATR inhibitors followed by evaluation of antiproliferative and chemosensitizing properties of selected compounds in vitro on a panel of cancer cell lines. According to pharmacophore resemblance to standard ATR inhibitor VX-970, a total of 17 compounds were purchased and tested. Among those 17 compounds, two proved antiproliferative efficacy in monotherapy, whereas ten compounds were effective in cisplatin co-treatment on the panel of ten different human cell lines.
Smarca5, an ATPase of the ISWI class of chromatin remodelers, is a key regulator of chromatin structure, cell cycle and DNA repair. Smarca5 is deregulated in leukemia and breast, lung and gastric cancers. However, its role in oncogenesis is not well understood. Chromatin remodelers often play dosage-dependent roles in cancer. We therefore investigated the epigenomic and phenotypic impact of controlled stepwise attenuation of Smarca5 function in the context of primary cell transformation, a process relevant to tumor formation. Upon conditional single- or double-allele Smarca5 deletion, the cells underwent both accelerated growth arrest and senescence entry and displayed gradually increased sensitivity to genotoxic insults. These phenotypic characteristics were explained by specific remodeling of the chromatin structure and the transcriptome in primary cells prior to the immortalization onset. These molecular programs implicated Smarca5 requirement in DNA damage repair, telomere maintenance, cell cycle progression and in restricting apoptosis and cellular senescence. Consistent with the molecular programs, we demonstrate for the first time that Smarca5-deficient primary cells exhibit dramatically decreased capacity to bypass senescence and immortalize, an indispensable step during cell transformation and cancer development. Thus, Smarca5 plays a crucial role in key homeostatic processes and sustains cancer-promoting molecular programs and cellular phenotypes.
DNA-dependent DNA and RNA polymerases are important modulators of biological functions such as replication, transcription, recombination, or repair. In this work performed in cell-free media, we studied the ability of selected DNA polymerases to overcome a monofunctional adduct of the cytotoxic/antitumor platinum-acridinylthiourea conjugate [PtCl(en)(L)](NO3)2 (en = ethane-1,2-diamine, L = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) (ACR) in its favored 5'-CG sequence. We focused on how a single site-specific ACR adduct with intercalation potency affects the processivity and fidelity of DNA-dependent DNA polymerases involved in translesion synthesis (TLS) and repair. The ability of the G(N7) hybrid ACR adduct formed in the 5'-TCGT sequence of a 24-mer DNA template to inhibit the synthesis of a complementary DNA strand by the exonuclease-deficient Klenow fragment of DNA polymerase I (KFexo-) and human polymerases eta, kappa, and iota was supplemented by thermodynamic analysis of the polymerization process. Thermodynamic parameters of a simulated translesion synthesis across the ACR adduct were obtained by using microscale thermophoresis (MST). Our results show a strong inhibitory effect of an ACR adduct on enzymatic TLS: there was only small synthesis of a full-length product (less than 10%) except polymerase eta (~20%). Polymerase eta was able to most efficiently bypass the ACR hybrid adduct. Incorporation of a correct dCMP opposite the modified G residue is preferred by all the four polymerases tested. On the other hand, the frequency of misinsertions increased. The relative efficiency of misinsertions is higher than that of matched cytidine monophosphate but still lower than for the nonmodified control duplex. Thermodynamic inspection of the simulated TLS revealed a significant stabilization of successively extended primer/template duplexes containing an ACR adduct. Moreover, no significant decrease of dissociation enthalpy change behind the position of the modification can contribute to the enzymatic TLS observed with the DNA-dependent, repair-involved polymerases. This TLS could lead to a higher tolerance of cancer cells to the ACR conjugate compared to its enhanced analog, where thiourea is replaced by an amidine group: [PtCl(en)(L)](NO3)2 (complex AMD, en = ethane-1,2-diamine, L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine).
- MeSH
- DNA Adducts chemistry MeSH
- DNA-Directed DNA Polymerase metabolism MeSH
- Intercalating Agents chemistry MeSH
- Humans MeSH
- Urea analogs & derivatives chemistry MeSH
- DNA Repair * MeSH
- Organoplatinum Compounds chemistry MeSH
- DNA Damage * MeSH
- DNA Replication MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
DNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiquitination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for HR. The RAD51 K133A mutation increased spontaneous mutations and stress-induced RF stalls and nascent strand degradation. Here, we report in RAD51K133A cells that this phenotype is reduced by expressing a TREX2 H188A mutation that deletes its exonuclease activity. In RAD51K133A cells, knocking out RAD18 or overexpressing PCNA reduces spontaneous mutations, while expressing ubiquitination-incompetent PCNAK164R increases mutations, indicating DDT as causal. Deleting TREX2 in cells deficient for the RF maintenance proteins poly(ADP-ribose) polymerase 1 (PARP1) or FANCB increased nascent strand degradation that was rescued by TREX2H188A, implying that TREX2 prohibits degradation independent of catalytic activity. A possible explanation for this occurrence is that TREX2H188A associates with UBC13 and ubiquitinates PCNA, suggesting a dual role for TREX2 in RF maintenance.
- MeSH
- Exodeoxyribonucleases genetics metabolism MeSH
- Phosphoproteins genetics metabolism MeSH
- Humans MeSH
- Mutation * MeSH
- Mice MeSH
- Rad51 Recombinase biosynthesis genetics metabolism MeSH
- DNA Replication * MeSH
- Transfection MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Translesion synthesis (TLS) through DNA adducts of antitumor platinum complexes has been an interesting aspect of DNA synthesis in cells treated with these metal-based drugs because of its correlation to drug sensitivity. We utilized model systems employing a DNA lesion derived from a site-specific monofunctional adduct formed by antitumor [PtCl(en)(L)](NO3)2 (complex AMD, en = ethane-1,2-diamine, L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine) at a unique G residue. The catalytic efficiency of TLS DNA polymerases, which differ in their processivity and fidelity for the insertion of correct dCTP, with respect to the other incorrect nucleotides, opposite the adduct of AMD, was investigated. For a deeper understanding of the factors that control the bypass of the site-specific adducts of AMD catalyzed by DNA polymerases, we also used microscale thermophoresis (MST) to measure the thermodynamic changes associated with TLS across a single, site-specific adduct formed in DNA by AMD. The relative catalytic efficiency of the investigated DNA polymerases for the insertion of correct dCTP, with respect to the other incorrect nucleotides, opposite the AMD adduct, was reduced. Nevertheless, incorporation of the correct C opposite the G modified by AMD of the template strand was promoted by an increasing thermodynamic stability of the resulting duplex. The reduced relative efficiency of the investigated DNA polymerases may be a consequence of the DNA intercalation of the acridine moiety of AMD and the size of the adduct. The products of the bypass of this monofunctional lesion produced by AMD and DNA polymerases also resulted from the misincorporation of dNTPs opposite the platinated G residues. The MST analysis suggested that thermodynamic factors may contribute to the forces that governed enhanced incorporation of the incorrect dNTPs by DNA polymerases.
- MeSH
- DNA Adducts chemistry genetics metabolism MeSH
- Acridines chemistry pharmacology MeSH
- Biocatalysis MeSH
- DNA-Directed DNA Polymerase metabolism MeSH
- DNA biosynthesis MeSH
- Guanine metabolism MeSH
- Catalysis MeSH
- Nucleotides genetics metabolism MeSH
- DNA Repair MeSH
- DNA Replication MeSH
- Platinum Compounds chemistry pharmacology MeSH
- Thermal Diffusion MeSH
- Thermodynamics MeSH
- Publication type
- Journal Article MeSH
As treatment options for patients with incurable metastatic castration-resistant prostate cancer (mCRPC) are considerably limited, novel effective therapeutic options are needed. Checkpoint kinase 1 (CHK1) is a highly conserved protein kinase implicated in the DNA damage response (DDR) pathway that prevents the accumulation of DNA damage and controls regular genome duplication. CHK1 has been associated with prostate cancer (PCa) induction, progression, and lethality; hence, CHK1 inhibitors SCH900776 (also known as MK-8776) and the more effective SCH900776 analog MU380 may have clinical applications in the therapy of PCa. Synergistic induction of DNA damage with CHK1 inhibition represents a promising therapeutic approach that has been tested in many types of malignancies, but not in chemoresistant mCRPC. Here, we report that such therapeutic approach may be exploited using the synergistic action of the antimetabolite gemcitabine (GEM) and CHK1 inhibitors SCH900776 and MU380 in docetaxel-resistant (DR) mCRPC. Given the results, both CHK1 inhibitors significantly potentiated the sensitivity to GEM in a panel of chemo-naïve and matched DR PCa cell lines under 2D conditions. MU380 exhibited a stronger synergistic effect with GEM than clinical candidate SCH900776. MU380 alone or in combination with GEM significantly reduced spheroid size and increased apoptosis in all patient-derived xenograft 3D cultures, with a higher impact in DR models. Combined treatment induced premature mitosis from G1 phase resulting in the mitotic catastrophe as a prestage of apoptosis. Finally, treatment by MU380 alone, or in combination with GEM, significantly inhibited tumor growth of both PC339-DOC and PC346C-DOC xenograft models in mice. Taken together, our data suggest that metabolically robust and selective CHK1 inhibitor MU380 can bypass docetaxel resistance and improve the effectiveness of GEM in DR mCRPC models. This approach might allow for dose reduction of GEM and thereby minimize undesired toxicity and may represent a therapeutic option for patients with incurable DR mCRPC.
- MeSH
- Cell Death drug effects MeSH
- Checkpoint Kinase 1 antagonists & inhibitors metabolism MeSH
- Drug Resistance, Neoplasm drug effects MeSH
- Deoxycytidine analogs & derivatives pharmacology MeSH
- Docetaxel pharmacology MeSH
- Humans MeSH
- Mitosis * drug effects MeSH
- Mice, SCID MeSH
- Cell Line, Tumor MeSH
- Prostatic Neoplasms pathology MeSH
- Piperidines chemistry pharmacology MeSH
- Cell Proliferation drug effects MeSH
- Pyrazoles chemistry pharmacology MeSH
- Pyrimidines chemistry pharmacology MeSH
- S Phase drug effects MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The aim was to investigate: changes of inflammatory, stress and cardiac response in patients undergoing open heart surgeries up to five days after the procedure; the association between inflammatory, stress and cardiac response and whether changes in a certain marker can predict short-term patient outcome. Ninety patients were divided into three groups, 30 participants each (on-pump,off-pump revascularization and valve replacement group). The following markers were measured:complete blood count, CRP, IL-6, IL-10, leptin, resistin, monocyte chemoattractant protein-1 (MCP-1), cortisol, CK and hsTnT in 5 points. Resistin increased in all three groups. Lower IL-10 levels were found after the surgery and higher levels of leptin and MCP-1 in the off-pump than in the on-pump group. Off-pump group had higher values of IL-6, IL-10, leptin, resistin and MCP-1 and lower levels of CK and hsTnT 24 after surgery than the on-pump group. We found significant correlation between MCP-1 and resistin. The difference between resistin at time points 2 and 3 significantly predicted transfusion needs; while the difference between CRP and resistin before and at the end of the surgery together with the difference between leukocytes at the end and 24 hours after the surgery predicted the use of inotropic agents/vasopressors. Cardiac surgeries cause an increase of inflammatory, stress and cardiac markers. Only resistin correlated with MCP-1 which confirms the link between resistin secreted form infiltrated macrophages and enhanced release of MCP-1.
- MeSH
- Biomarkers blood MeSH
- Adult MeSH
- Coronary Artery Bypass methods trends MeSH
- Middle Aged MeSH
- Humans MeSH
- Inflammation Mediators blood MeSH
- Young Adult MeSH
- Necrosis MeSH
- Coronary Artery Disease blood surgery MeSH
- Aortic Valve Disease blood surgery MeSH
- Oxidative Stress physiology MeSH
- Myocardial Revascularization methods trends MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Oxidative stress in cells can lead to the accumulation of reactive oxygen species and oxidation of DNA precursors. Oxidized nucleotides such as 2'-deoxyribo-5-hydroxyuridin (HdU) and 2'-deoxyribo-5-hydroxymethyluridin (HMdU) can be inserted into DNA during replication and repair. HdU and HMdU have attracted particular interest because they have different effects on damaged-DNA processing enzymes that control the downstream effects of the lesions. Herein, we studied the chemically simulated translesion DNA synthesis (TLS) across the lesions formed by HdU or HMdU using microscale thermophoresis (MST). The thermodynamic changes associated with replication across HdU or HMdU show that the HdU paired with the mismatched deoxyribonucleoside triphosphates disturbs DNA duplexes considerably less than thymidine (dT) or HMdU. Moreover, we also demonstrate that TLS by DNA polymerases across the lesion derived from HdU was markedly less extensive and potentially more mutagenic than that across the lesion formed by HMdU. Thus, DNA polymerization by DNA polymerase η (polη), the exonuclease-deficient Klenow fragment of DNA polymerase I (KF-), and reverse transcriptase from human immunodeficiency virus type 1 (HIV-1 RT) across these pyrimidine lesions correlated with the different stabilization effects of the HdU and HMdU in DNA duplexes revealed by MST. The equilibrium thermodynamic data obtained by MST can explain the influence of the thermodynamic alterations on the ability of DNA polymerases to bypass lesions induced by oxidative products of pyrimidines. The results also highlighted the usefulness of MST in evaluating the impact of oxidative products of pyrimidines on the processing of these lesions by damaged DNA processing enzymes.
- MeSH
- DNA-Directed DNA Polymerase metabolism MeSH
- DNA biosynthesis drug effects MeSH
- HIV-1 MeSH
- Humans MeSH
- Mutagens chemistry metabolism pharmacology MeSH
- DNA Repair MeSH
- Oxidation-Reduction MeSH
- Oxidative Stress * MeSH
- Pentoxyl analogs & derivatives chemistry metabolism pharmacology MeSH
- DNA Damage MeSH
- Pyrimidines chemistry metabolism pharmacology MeSH
- DNA Replication drug effects MeSH
- Thermodynamics MeSH
- Uracil analogs & derivatives chemistry metabolism pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Cancer cells generally possess higher levels of reactive oxygen species than normal cells, and this can serve as a possible therapeutic target. In this proof-of-concept study, an antioxidant-inspired drug discovery strategy was evaluated using a hydroxycinnamic acid derivative. The processing of oxidized mixtures of p-coumaric acid methyl ester (pcm) revealed a new antitumor lead, graviquinone. Graviquinone bypassed ABCB1-mediated resistance, induced DNA damage in lung carcinoma cells but exerted DNA protective activity in normal keratinocytes, and modulated DNA damage response in MCF-7 cells. The cytotoxic effect of pcm in MCF-7 cells was potentiated under H2O2-induced oxidative stress, and the formation of graviquinone was confirmed by Fenton's reaction on pcm. In silico density functional theory calculations suggested graviquinone as a kinetic product of pcm-scavenging •OH radicals. Our results demonstrate the pharmacological value of an in situ-formed, oxidative stress-related metabolite of an antioxidant. This might be of particular importance for designing new strategies for antioxidant-based drug discovery.
- MeSH
- Drug Resistance, Neoplasm drug effects MeSH
- Cyclohexanones pharmacology toxicity MeSH
- Hydroxyl Radical chemistry MeSH
- Coumaric Acids chemistry metabolism pharmacology MeSH
- Humans MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Drug Discovery MeSH
- Oxidation-Reduction MeSH
- Computer Simulation MeSH
- DNA Damage drug effects MeSH
- Antineoplastic Agents pharmacology toxicity MeSH
- Free Radical Scavengers pharmacology toxicity MeSH
- Signal Transduction drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The information on candidate cancer driver alterations available from public databases is often descriptive and of limited mechanistic insight, which poses difficulties for reliable distinction between true driver and passenger events. To address this challenge, we performed in-depth analysis of whole-exome sequencing data from cell lines generated by a barrier bypass-clonal expansion (BBCE) protocol. The employed strategy is based on carcinogen-driven immortalization of primary mouse embryonic fibroblasts and recapitulates early steps of cell transformation. Among the mutated genes were almost 200 COSMIC Cancer Gene Census genes, many of which were recurrently affected in the set of 25 immortalized cell lines. The alterations affected pathways regulating DNA damage response and repair, transcription and chromatin structure, cell cycle and cell death, as well as developmental pathways. The functional impact of the mutations was strongly supported by the manifestation of several known cancer hotspot mutations among the identified alterations. We identified a new set of genes encoding subunits of the BAF chromatin remodeling complex that exhibited Ras-mediated dependence on PRC2 histone methyltransferase activity, a finding that is similar to what has been observed for other BAF subunits in cancer cells. Among the affected BAF complex subunits, we determined Smarcd2 and Smarcc1 as putative driver candidates not yet fully identified by large-scale cancer genome sequencing projects. In addition, Ep400 displayed characteristics of a driver gene in that it showed a mutually exclusive mutation pattern when compared with mutations in the Trrap subunit of the TIP60 complex, both in the cell line panel and in a human tumor data set. We propose that the information generated by deep sequencing of the BBCE cell lines coupled with phenotypic analysis of the mutant cells can yield mechanistic insights into driver events relevant to human cancer development.
- MeSH
- Exome genetics MeSH
- Fibroblasts MeSH
- Humans MeSH
- Mutation MeSH
- Mice MeSH
- Cell Transformation, Neoplastic genetics MeSH
- Neoplasm Proteins genetics MeSH
- Neoplasms genetics MeSH
- Primary Cell Culture MeSH
- High-Throughput Nucleotide Sequencing * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH