... Patobiochemie 350 -- 6.8 Pojivová tkáň 352 -- Kosti a zuby 352 -- Kolageny 354 -- Extracelulární matrix ... ... I 356 -- Extracelulární matrix II 358 -- Patobiochemie 360 -- 6.9 Mozek a smyslové orgány 362 -- Přenos ... ... signálu 404 -- Přehled 404 -- Membránové receptory 406 -- Iontové kanály 408 -- Proteiny vázající GTP -- (G-proteiny ...
2. české vydání xii, 488 stran : ilustrace (převážně barevné) ; 21 cm
Atlas a přehled, který se zaměřuje na biochemii a fyziologii člověka. Určeno odborné veřejnosti.; Biochemie člověka přehledně na 223 barevných schématech. Grafické znázornění je základem knihy – texty slouží především k rozšíření a doplnění legendy k vyobrazením. Autoři krátce uvádějí čtenáře do hlavní problematiky chemie a biochemie, zmiňují provázanost mezi chemickou strukturou a biologickou funkcí nebo patologickými procesy. V knize čtenář najde aktuální informace, vývoj a poznatky z oboru, strukturu důležitých molekul a mnohé další informace. Nejvíce místa je v tomto atlasu samozřejmě věnováno biochemii člověka, zahrnuje však i biochemii dalších živočichů, rostlin a mikroorganismů. Didaktické přednosti, které je nutné ocenit: * Efektivní poměr mezi barevnou grafikou a vysvětlujícím textem. * Unifikované barevné zobrazení atomů, koenzymů, chemických tříd a buněčných organel, umožňující rychlou orientaci a pochopení ve všech zobrazených systémech. * Moderní zobrazení mnoha důležitých molekul. * Rychlé orientaci pomáhá barevné kódování a užití různých symbolů, vysvětlivky jsou umístěny na vnitřních stranách obálky. O úspěšnosti knihy vypovídá i seznam předchozích vydání: české 2012; německé 1994, 1997, 2003, 2009; francouzské 1994, 1999, 2004, 2011; anglické 1996, 2004, 2012; japonské 1997, 2007, 2015; portugalské 2005, 2013; ruské 2000, 2017; řecké 1999, 2007; španělské 2004, 2012; turecké 2002, 2016; čínské 2008; indonéské 2002; italské 1997; korejské 2008; nizozemské 2004; polské 2005.
- MeSH
- Biochemistry MeSH
- Physiology MeSH
- Publication type
- Atlas MeSH
- Review MeSH
- Conspectus
- Biochemie. Molekulární biologie. Biofyzika
- NML Fields
- biochemie
Ceramides are key components of the skin's permeability barrier. In atopic dermatitis, pathological hydrolysis of ceramide precursors - glucosylceramides and sphingomyelin - into lysosphingolipids, specifically glucosylsphingosine (GS) and sphingosine-phosphorylcholine (SPC), and free fatty acids (FFAs) has been proposed to contribute to impaired skin barrier function. This study investigated whether replacing ceramides with lysosphingolipids and FFAs in skin lipid barrier models would exacerbate barrier dysfunction. When applied topically to human stratum corneum sheets, SPC and GS increased water loss, decreased electrical impedance, and slightly disordered lipid chains. In lipid models containing isolated human stratum corneum ceramides, reducing ceramides by ≥ 30% significantly increased permeability to four markers, likely due to loss of long-periodicity phase (LPP) lamellae and phase separation within the lipid matrix, as revealed by X-ray diffraction and infrared spectroscopy. However, when the missing ceramides were replaced by lysosphingolipids and FFAs, no further increase in permeability was observed. Conversely, these molecules partially mitigated the negative effects of ceramide deficiency, particularly with 5%-10% SPC, which reduced permeability even compared to control with "healthy" lipid composition. These findings suggest that while ceramide deficiency is a key factor in skin barrier dysfunction, the presence of lysosphingolipids and FFAs does not aggravate lipid structural or functional damage, but may provide partial compensation, raising further questions about the behavior of lyso(sphingo)lipids in rigid multilamellar lipid environments, such as the stratum corneum, that warrant further investigation.
- MeSH
- Models, Biological MeSH
- Ceramides * metabolism MeSH
- Phosphorylcholine analogs & derivatives MeSH
- Skin * metabolism MeSH
- Fatty Acids, Nonesterified metabolism MeSH
- Humans MeSH
- Lysophospholipids metabolism MeSH
- Permeability drug effects MeSH
- Sphingosine analogs & derivatives metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The extracellular matrix (ECM)-and its mechanobiology-regulates key cellular functions that drive tumor growth and development. Accordingly, mechanotherapy is emerging as an effective approach to treat fibrotic diseases such as cancer. Through restoring the ECM to healthy-like conditions, this treatment aims to improve tissue perfusion, facilitating the delivery of chemotherapies. In particular, the manipulation of ECM is gaining interest as a valuable strategy for developing innovative treatments based on nanoparticles (NPs). However, further progress is required; for instance, it is known that the presence of a dense ECM, which hampers the penetration of NPs, primarily impacts the efficacy of nanomedicines. Furthermore, most 2D in vitro studies fail to recapitulate the physiological deposition of matrix components. To address these issues, a comprehensive understanding of the interactions between the ECM and NPs is needed. This review focuses on the main features of the ECM and its complex interplay with NPs. Recent advances in mechanotherapy are discussed and insights are offered into how its combination with nanomedicine can help improve nanomaterials design and advance their clinical translation.
- MeSH
- Extracellular Matrix * metabolism MeSH
- Humans MeSH
- Neoplasms * therapy MeSH
- Nanoparticles * chemistry MeSH
- Nanomedicine * methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Impaired fibroblast growth factor receptor (FGFR) signaling is associated with many human conditions, including growth disorders, degenerative diseases, and cancer. Current FGFR therapeutics are based on chemical inhibitors of FGFR tyrosine kinase activity (TKIs). However, FGFR TKIs are limited in their target specificity as they generally inhibit all FGFRs and other receptor tyrosine kinases. In the search for specific inhibitors of human FGFR1, we identified VZ23, a DNA aptamer that binds to FGFR1b and FGFR1c with a KD of 55 nM and 162 nM, respectively, but not to the other FGFR variants (FGFR2b, FGFR2c, FGFR3b, FGFR3c, FGFR4). In cells, VZ23 inhibited the activation of downstream FGFR1 signaling and FGFR1-mediated regulation of cellular senescence, proliferation, and extracellular matrix homeostasis. Consistent with the specificity toward FGFR1 observed in vitro, VZ23 did not inhibit FGFR2-4 signaling in cells. We show that the VZ23 inhibits FGFR1 signaling in the presence of cognate fibroblast growth factor (FGF) ligands and its inhibitory activity is linked to its capacity to form unusual G-quadruplex structure. Our data suggest that targeting FGFR1 with DNA aptamers could be an effective alternative to TKIs for treating impaired FGFR1 signaling in human craniosynostoses.
- Publication type
- Journal Article MeSH
Alexander disease (AxD) is a rare and severe neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP). While the exact disease mechanism remains unknown, previous studies suggest that mutant GFAP influences many cellular processes, including cytoskeleton stability, mechanosensing, metabolism, and proteasome function. While most studies have primarily focused on GFAP-expressing astrocytes, GFAP is also expressed by radial glia and neural progenitor cells, prompting questions about the impact of GFAP mutations on central nervous system (CNS) development. In this study, we observed impaired differentiation of astrocytes and neurons in co-cultures of astrocytes and neurons, as well as in neural organoids, both generated from AxD patient-derived induced pluripotent stem (iPS) cells with a GFAPR239C mutation. Leveraging single-cell RNA sequencing (scRNA-seq), we identified distinct cell populations and transcriptomic differences between the mutant GFAP cultures and a corrected isogenic control. These findings were supported by results obtained with immunocytochemistry and proteomics. In co-cultures, the GFAPR239C mutation resulted in an increased abundance of immature cells, while in unguided neural organoids and cortical organoids, we observed altered lineage commitment and reduced abundance of astrocytes. Gene expression analysis revealed increased stress susceptibility, cytoskeletal abnormalities, and altered extracellular matrix and cell-cell communication patterns in the AxD cultures, which also exhibited higher cell death after stress. Overall, our results point to altered cell differentiation in AxD patient-derived iPS-cell models, opening new avenues for AxD research.
- MeSH
- Alexander Disease * genetics pathology metabolism MeSH
- Astrocytes * metabolism pathology MeSH
- Cell Differentiation * physiology MeSH
- Glial Fibrillary Acidic Protein * metabolism genetics MeSH
- Induced Pluripotent Stem Cells * metabolism MeSH
- Coculture Techniques MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Mutation MeSH
- Neural Stem Cells metabolism MeSH
- Neurons metabolism pathology MeSH
- Organoids metabolism pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of kidney injury. The phenotypes of A20Δpodocyte (podocyte-specific knockout of A20) mice were compared with those of control mice at 6 months of age to identify spontaneous changes in kidney function. A20Δpodocyte mice presented elevated serum urea nitrogen and creatinine levels, along with increased accumulation of inflammatory cells-neutrophils and macrophages-within the glomeruli. Additionally, A20Δpodocyte mice displayed significant podocyte loss. Ultrastructural analysis of A20 podocyte-knockout mouse glomeruli revealed hypocellularity of the glomerular tuft, expansion of the extracellular matrix, podocytopenia associated with foot process effacement, karyopyknosis, micronuclei, and podocyte detachment. In addition to podocyte death, we also observed damage to intracapillary endothelial cells with vacuolation of the cytoplasm and condensation of nuclear chromatin. A20 expression downregulation and CRISPR-Cas9 genome editing targeting A20 in a podocyte cell line confirmed these findings in vitro, highlighting the significant contribution of A20 activity in podocytes to glomerular injury pathogenesis. Finally, we analyzed TNFAIP3 transcription levels alongside genes involved in apoptosis, anoikis, NF-κB regulation, and cell attachment in glomerular and tubular compartments of kidney biopsies of patients with various renal diseases.
- MeSH
- Cytoskeleton * metabolism MeSH
- Glomerulonephritis * pathology metabolism genetics MeSH
- Kidney Glomerulus pathology metabolism MeSH
- Humans MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout * MeSH
- Mice MeSH
- NF-kappa B metabolism MeSH
- Podocytes * metabolism pathology MeSH
- Signal Transduction MeSH
- Tumor Necrosis Factor alpha-Induced Protein 3 * metabolism genetics MeSH
- Inflammation * pathology genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Anaplastic Large Cell Lymphoma (ALCL) is an aggressive T-cell lymphoma affecting children and young adults. About 30% of patients develop therapy resistance therefore new precision medicine drugs are highly warranted. Multiple rounds of structure-activity optimization of Caffeic Acid Phenethyl Ester have resulted in CM14. CM14 causes upregulation of genes involved in oxidative stress response and downregulation of DNA replication genes leading to G2/M arrest and subsequent apoptosis induction. In accordance with this, an unbiased proteomics approach, confocal microscopy and molecular modeling showed that TUBGCP2, member of the centrosomal γ-TuRC complex, is a direct interaction partner of CM14. CM14 overcomes ALK inhibitor resistance in ALCL and is also active in T-cell Acute Lymphoblastic Leukemia and Acute Myeloid Leukemia. Interestingly, CM14 also induced cell death in docetaxel-resistant prostate cancer cells thus suggesting an unexpected role in solid cancers. Thus, we synthesized and thoroughly characterized a novel TUBGCP2 targeting drug that is active in ALCL but has also potential for other malignancies.
- MeSH
- Apoptosis * drug effects MeSH
- Centrosome * drug effects metabolism MeSH
- Phenylethyl Alcohol * analogs & derivatives pharmacology chemistry MeSH
- Caffeic Acids * pharmacology chemistry MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents * pharmacology chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods.
Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification. Loss of glucose-6-phosphate dehydrogenase in chondrocytes does not affect cell proliferation because reversal of the non-oxidative PPP produces ribose-5-phosphate. However, the decreased NADPH production reduces glutathione recycling, resulting in decreased protection against the reactive oxygen species (ROS) produced during oxidative protein folding. The disturbed proteostasis activates the unfolded protein response and protein degradation. Moreover, the oxidative stress induces ferroptosis, which, together with altered matrix properties, results in a chondrodysplasia phenotype. Collectively, these data show that in hypoxia, the PPP is crucial to produce reducing power that confines ROS generated by oxidative protein folding and thereby controls proteostasis and prevents ferroptosis.
- MeSH
- Chondrocytes * metabolism MeSH
- Ferroptosis * physiology MeSH
- Glucosephosphate Dehydrogenase metabolism MeSH
- Glucose metabolism MeSH
- Mice MeSH
- Oxidation-Reduction MeSH
- Oxidative Stress * MeSH
- Pentose Phosphate Pathway * MeSH
- Reactive Oxygen Species * metabolism MeSH
- Protein Folding * MeSH
- Unfolded Protein Response MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: The aging process is intricately linked to alterations in cellular and tissue structures, with the respiratory system being particularly susceptible to age-related changes. Therefore, this study aimed to profile the activity of proteases using activity-based probes in lung tissues of old and young rats, focusing on the expression levels of different, in particular cathepsins G and X and matrix Metalloproteinases (MMPs). Additionally, the impact on extracellular matrix (ECM) components, particularly fibronectin, in relation to age-related histological and ultrastructural changes in lung tissues was investigated. MATERIALS AND METHODS: Lung tissues from old and young rats were subjected to activity-based probe profiling to assess the activity of different proteases. Expression levels of cathepsins G and X were quantified, and zymography was performed to evaluate matrix metalloproteinases activity. Furthermore, ECM components, specifically fibronectin, were examined for signs of degradation in the old lung tissues compared to the young ones. Moreover, histological, immunohistochemical and ultrastructural assessments of old and young lung tissue were also conducted. RESULTS: Our results showed that the expression levels of cathepsins G and X were notably higher in old rat lung tissues in contrast to those in young rat lung tissues. Zymography analysis revealed elevated MMP activity in the old lung tissues compared to the young ones. Particularly, significant degradation of fibronectin, an essential ECM component, was observed in the old lung tissues. Numerous histological and ultrastructural alterations were observed in old lung tissues compared to young lung tissues. DISCUSSION AND CONCLUSION: The findings indicate an age-related upregulation of cathepsins G and X along with heightened MMP activity in old rat lung tissues, potentially contributing to the degradation of fibronectin within the ECM. These alterations highlight potential mechanisms underlying age-associated changes in lung tissue integrity and provide insights into protease-mediated ECM remodeling in the context of aging lungs.
- MeSH
- Extracellular Matrix metabolism ultrastructure MeSH
- Fibronectins * metabolism MeSH
- Cathepsin G metabolism MeSH
- Rats MeSH
- Lysosomes ultrastructure metabolism MeSH
- Matrix Metalloproteinases metabolism MeSH
- Lung * ultrastructure metabolism MeSH
- Peptide Hydrolases metabolism MeSH
- Aging * metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH