Ion Torrent Dotaz Zobrazit nápovědu
Molecular profiling of a tumor allows the opportunity to design specific therapies which are able to interact only with cancer cells characterized by the accumulation of several genomic aberrations. This study investigates the usefulness of next-generation sequencing (NGS) and mutation-specific analysis methods for the detection of target genes for current therapies in non-small-cell lung cancer (NSCLC), metastatic colorectal cancer (mCRC), and melanoma patients. We focused our attention on EGFR, BRAF, KRAS, and BRAF genes for NSCLC, melanoma, and mCRC samples, respectively. Our study demonstrated that in about 2% of analyzed cases, the two techniques did not show the same or overlapping results. Two patients affected by mCRC resulted in wild-type (WT) for BRAF and two cases with NSCLC were WT for EGFR according to PGM analysis. In contrast, these samples were mutated for the evaluated genes using the therascreen test on Rotor-Gene Q. In conclusion, our experience suggests that it would be appropriate to confirm the WT status of the genes of interest with a more sensitive analysis method to avoid the presence of a small neoplastic clone and drive the clinician to correct patient monitoring.
In the next generation sequencing era we are encountering hundreds of thousands of sequences from specific organisms. Such massive data must be accurately classified both functionally and structurally. Determining appropriate sequences with a specific function from next generation sequencing, however, is a daunting experimental task. A recent salivary gland transcriptome from the hard tick Ixodes ricinus, a European disease vector, has been made publicly available. Among the protein families sequenced by the salivary gland transcriptome of I. ricinus, the Kunitz-domain is one of the highly represented protein families. Thus far, recent tick transciptomes solely classify (computationally) Kunitz sequences as putative serine protease inhibitors. We present here a novel method using a machine-learning algorithm to "fish" for candidate ion-channel effectors and loss of serine protease inhibitor function within the Kunitz-domain protein family of the I. ricinus salivary gland transcriptome. The models, data and scripts used in this work are available online from http://life.bsc.es/pid/web/imoal/kunitz-classification.html.
- MeSH
- algoritmy MeSH
- inhibitory proteas MeSH
- iontové kanály genetika MeSH
- klíště genetika MeSH
- proteinové domény MeSH
- proteiny členovců genetika MeSH
- sekvence aminokyselin MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- slinné proteiny a peptidy genetika MeSH
- transkriptom * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- diagnostické techniky molekulární * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- rozhovory MeSH
Metagenomic high-throughput sequencing (mHTS) is a hypothesis-free, universal pathogen detection technique for determination of the DNA/RNA sequences in a variety of sample types and infectious syndromes. mHTS is still in its early stages of translating into clinical application. To support the development, implementation and standardization of mHTS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mHTS for viral diagnostics to share methodologies and experiences, and to develop application recommendations. This manuscript aims to provide practical recommendations for the wet lab procedures necessary for implementation of mHTS for virus diagnostics and to give recommendations for development and validation of laboratory methods, including mHTS quality assurance, control and quality assessment protocols.
- MeSH
- metagenomika * MeSH
- viry * genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
UNLABELLED: ABIF Manager is simple application for low-level access to ABIF formatted files. Those are produced by Data Collection software based on the data, collected from capillary sequencing machine. The application shows all the data as readable text, which can be easily edited. AVAILABILITY AND IMPLEMENTATION: The program source code and compiled executable is freely available at: https://sourceforge.net/projects/abifmanager/.
- MeSH
- software * MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The volume of nucleic acid sequence data has exploded recently, amplifying the challenge of transforming data into meaningful information. Processing data can require an increasingly complex ecosystem of customized tools, which increases difficulty in communicating analyses in an understandable way yet is of sufficient detail to enable informed decisions or repeats. This can be of particular interest to institutions and companies communicating computations in a regulatory environment. BioCompute Objects (BCOs; an instance of pipeline documentation that conforms to the IEEE 2791-2020 standard) were developed as a standardized mechanism for analysis reporting. A suite of BCOs is presented, representing interconnected elements of a computation modeled after those that might be found in a regulatory submission but are shared publicly - in this case a pipeline designed to identify viral contaminants in biological manufacturing, such as for vaccines.
Abscesses are often clinically manifested as local necrotic tissues in various organs or systems of the human body, which is commonly caused by microbial infection. Rapid and accurate identification of pathogens from clinical abscetic samples would greatly guide a clinician to make the precise choices of the antimicrobial treatment. Here, this study aimed to investigate the application of metagenomic next-generation sequencing (mNGS) in the microbial detection of clinical samples of abscess fluids from various organs or systems. Nine patients with abscess from various organs or systems were enrolled in this study. The pathogenic bacteria in abscess fluid were detected and compared by the conventional bacterial culture and mNGS respectively. The dominant pathogens of abscess fluids in 8 cases can be found directly from mNGS, dominating over 80% of the total reads abundance of the microbiome. Although the pathogens from 6 cases detected by mNGS were consistent with that from the conventional bacteria culture method, the fastidious obligate anaerobic bacteria in 2 cases additionally detected by mNGS were not found by the conventional culture method. Moreover, complex polymicrobial infection containing Parvimonas micra in one case negatively with conventional bacterial culture were demonstrated by the mNGS method. And the mNGS method can directly reflect the diversity of microbial ecology in the abscess fluids from the different parts of the human body. Conclusively, mNGS can be used as a supplemental method for the pathogen detection of clinically abscess fluids.
- MeSH
- absces * diagnóza MeSH
- Firmicutes MeSH
- lidé MeSH
- metagenomika * MeSH
- senzitivita a specificita MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Klíčová slova
- reparační geny, CD34+ buňky,
- MeSH
- lidé MeSH
- myelodysplastické syndromy * genetika patofyziologie MeSH
- oprava DNA * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- abstrakt z konference MeSH
Viroids are non-coding single-stranded circular RNA molecules that replicate autonomously in infected host plants causing mild to lethal symptoms. Their genomes contain about 250-400 nucleotides, depending on viroid species. Members of the family Pospiviroidae, like the Potato spindle tuber viroid (PSTVd), replicate via an asymmetric rolling-circle mechanism using the host DNA-dependent RNA-Polymerase II in the nucleus, while members of Avsunviroidae are replicated in a symmetric rolling-circle mechanism probably by the nuclear-encoded polymerase in chloroplasts. Viroids induce the production of viroid-specific small RNAs (vsRNA) that can direct (post-)transcriptional gene silencing against host transcripts or genomic sequences. Here, we used deep-sequencing to analyze vsRNAs from plants infected with different PSTVd variants to elucidate the PSTVd quasipecies evolved during infection. We recovered several novel as well as previously known PSTVd variants that were obviously competent in replication and identified common strand-specific mutations. The calculated mean error rate per nucleotide position was less than [Formula: see text], quite comparable to the value of [Formula: see text] reported for a member of Avsunviroidae. The resulting error threshold allows the synthesis of longer-than-unit-length replication intermediates as required by the asymmetric rolling-circle mechanism of members of Pospiviroidae.