JAK/STAT3 pathway
Dotaz
Zobrazit nápovědu
Chronic inflammation represents a major threat to human health since long-term systemic inflammation is known to affect distinct tissues and organs. Recently, solid evidence demonstrated that chronic inflammation affects hematopoiesis; however, how chronic inflammation affects hematopoietic stem cells (HSCs) on the mechanistic level is poorly understood. Here, we employ a mouse model of chronic multifocal osteomyelitis (CMO) to assess the effects of a spontaneously developed inflammatory condition on HSCs. We demonstrate that hematopoietic and nonhematopoietic compartments in CMO BM contribute to HSC expansion and impair their function. Remarkably, our results suggest that the typical features of murine multifocal osteomyelitis and the HSC phenotype are mechanistically decoupled. We show that the CMO environment imprints a myeloid gene signature and imposes a pro-inflammatory profile on HSCs. We identify IL-6 and the Jak/Stat3 signaling pathway as critical mediators. However, while IL-6 and Stat3 blockage reduce HSC numbers in CMO mice, only inhibition of Stat3 activity significantly rescues their fitness. Our data emphasize the detrimental effects of chronic inflammation on stem cell function, opening new venues for treatment.
- MeSH
- hematopoetické kmenové buňky metabolismus MeSH
- hematopoéza MeSH
- interleukin-6 * genetika metabolismus MeSH
- lidé MeSH
- myši MeSH
- signální transdukce MeSH
- transkripční faktor STAT3 genetika metabolismus MeSH
- zánět * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Aging leads to a decrease in muscle function, mass, and strength in skeletal muscle of animals and humans. The transcriptome identified activation of the JAK/STAT pathway, a pathway that is associated with skeletal muscle atrophy, and endurance training has a significant effect on improving sarcopenia; however, the exact mechanism still requires further study. We investigated the effect of endurance training on sarcopenia. Six-month-old male SAMR1 mice were used as a young control group (group C), and the same month-old male SAMP8 mice were divided into an exercise group (group E) and a model group (group M). A 3-month running exercise intervention was performed on group E, and the other two groups were kept normally. Aging caused significant signs of sarcopenia in the SAMP8 mice, and endurance training effectively improved muscle function, muscle mass, and muscle strength in the SAMP8 mice. The expression of JAK2/STAT3 pathway factor was decreased in group E compared with group M, and the expression of SOCS3, the target gene of STAT3, and NR1D1, an atrophy-related factor, was significantly increased. Endurance training significantly improved the phenotypes associated with sarcopenia, and the JAK2/STAT3 pathway is a possible mechanism for the improvement of sarcopenia by endurance training, while NR1D1 may be its potential target. Keywords: Sarcopenia, Endurance training, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), Nuclear receptor subfamily 1, group D member 1 (Nr1d1).
- MeSH
- Janus kinasa 2 * metabolismus MeSH
- kondiční příprava zvířat * fyziologie MeSH
- kosterní svaly metabolismus MeSH
- myši MeSH
- sarkopenie * metabolismus prevence a kontrola terapie MeSH
- signální transdukce * MeSH
- stárnutí metabolismus MeSH
- transkripční faktor STAT3 * metabolismus MeSH
- vytrvalostní trénink * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
After peripheral nerve injury microglial reactivity change in the spinal cord is associated with an early activation of Janus kinase (JAK)/STAT3 transduction pathway whose blockade attenuates local inflammation and pain hypersensitivity. However, the consequences of microglial JAK/STAT3-mediated signaling on neighboring cells are unknown. Using an in vitro paradigm we assessed the impact of microglial JAK/STAT3 activity on functional characteristics of astrocytes and spinal cord neurons. Purified rat primary microglia was stimulated with JAK/STAT3 classical activator interleukin-6 in the presence or absence of a selective STAT3 inhibitor and rat primary astrocytes or spinal cord neurons were exposed to microglia conditioned media (CM). JAK/STAT3 activity-generated microglial CM modulated both astrocyte and neuron characteristics. Beyond inducing mRNA expression changes in various targets of interest in astrocytes and neurons, microglia CM activated c-Jun N-terminal kinase, STAT3 and NF-κB intracellular pathways in astrocytes and promoted their proliferation. Without modifying neuronal excitability or survival, CM affected the nerve processes morphology and distribution of the post-synaptic density protein 95, a marker of glutamatergic synaptic contacts. These findings show that JAK/STAT3 activity in microglia impacts the functional characteristics of astrocytes and neurons. This suggests its participation in spinal cord tissue plasticity and remodeling occurring after peripheral nerve injury. We show that the activity of JAK/STAT3 pathway in microglial cells confers them a specific signaling modality toward neighboring cells, promoting astrocyte proliferation and changes in neuronal morphology. These in vitro data suggest that the early JAK/STAT3 activation in spinal cord microglia, associated with peripheral nerve injury, participates in functional alteration of various cell populations and in spinal tissue remodeling.
- MeSH
- astrocyty metabolismus MeSH
- Janus kinasy metabolismus MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- mícha cytologie metabolismus MeSH
- mikroglie metabolismus MeSH
- neurony metabolismus MeSH
- potkani Sprague-Dawley MeSH
- signální transdukce fyziologie MeSH
- transkripční faktor STAT3 metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Osteosarcoma (OS), a severe malignant bone tumour, usually occurs in adolescents and children and has a poor prognosis. Asiatic acid (AA), an active component isolated from Centella asiatica (L.) Urb., exhibits appreciable anti-oxidant and anti-tumour activities. So far, the effects and underlying mechanisms of AA against OS have not been clarified. Here, we explored the anti-tumour effects of AA against human OS and the involved mechanism mediating its actions. To evaluate effects of AA on the cell proliferation of human OS cells, cell viability and colony formation assays were performed. Flow cytometry was used to evaluate apoptosis in OS cells exposed to AA and mitochondrial membrane potential. Western blotting and RT-PCR were applied to determine expression of the relevant proteins and their mRNA levels. Our explorations showed that AA inhibits proliferation of human OS cells in a concentration- and time-dependent manner, and induces apoptosis of OS cells by the intrinsic (mitochondrial) pathway. Importantly, we found that inhibition of the AA-induced phosphorylation of JAK2/STAT3 signalling molecules and the decrease in MCL-1 contributed to the anti-tumour efficacy of AA. Collectively, our results suggest that AA could evoke mitochondrial- induced apoptosis in human OS cells by suppression of the JAK2/STAT3 pathway and MCL-1 expression. These results strongly demonstrate that AA could be a potential anti-tumour agent for OS treatment.
Anaplastic large cell lymphoma (ALCL) is an aggressive, CD30+ T cell lymphoma of children and adults. ALK fusion transcripts or mutations in the JAK-STAT pathway are observed in most ALCL tumors, but the mechanisms underlying tumorigenesis are not fully understood. Here, we show that dysregulated STAT3 in ALCL cooccupies enhancers with master transcription factors BATF3, IRF4, and IKZF1 to form a core regulatory circuit that establishes and maintains the malignant cell state in ALCL. Critical downstream targets of this network in ALCL cells include the protooncogene MYC, which requires active STAT3 to facilitate high levels of MYC transcription. The core autoregulatory transcriptional circuitry activity is reinforced by MYC binding to the enhancer regions associated with STAT3 and each of the core regulatory transcription factors. Thus, activation of STAT3 provides the crucial link between aberrant tyrosine kinase signaling and the core transcriptional machinery that drives tumorigenesis and creates therapeutic vulnerabilities in ALCL.
- MeSH
- anaplastická lymfomová kináza genetika metabolismus MeSH
- anaplastický velkobuněčný lymfom * genetika metabolismus patologie MeSH
- dítě MeSH
- dospělí MeSH
- Janus kinasy metabolismus MeSH
- karcinogeneze genetika MeSH
- lidé MeSH
- nádorová transformace buněk MeSH
- signální transdukce * genetika MeSH
- transkripční faktor STAT3 genetika MeSH
- transkripční faktory STAT metabolismus MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
T-2 toxin, a major compound of trichothecenes, inhibits protein synthesis and induces inflammation and cell apoptosis through the activation of MAPK pathway. The JAK/STAT pathway has recently been shown to be downstream targets of trichothecenes. However, whether there is any crosstalk between JNK and JAK/STAT pathways in trichothecene toxicity has not been studied. In the present study, we explored this potential in RAW264.7 cells treated with T-2 toxin. Our results revealed a crosstalk between JNK1 and STAT3 after T-2 toxin treatment, which was mediated by K-Ras. T-2 toxin treatment resulted in rapid phosphorylation, and more importantly, JNK1-STAT3 signaling pathway was shown to maintain the normal function of the mitochondria and to inhibit T-2 toxin-induced apoptosis. Therefore, this pathway was considered to be a potential cell survival pathway. Breakdown and degranulation of ribosomes in the rough endoplasmic reticulum and swelling of mitochondria were clearly visible after the cells had been incubated with T-2 toxin for 12h. Our data suggest that T-2 toxin had a Janus face: it induced both apoptotic and cell survival pathways. These results suggest that the crosstalk and the balance between MAPK and JAK/STAT pathway might be involved in T-2 toxin-induced apoptosis in RAW264.7 cells.
- MeSH
- anthraceny farmakologie MeSH
- apoptóza účinky léků MeSH
- biologické modely MeSH
- buněčné linie MeSH
- cytokiny genetika metabolismus MeSH
- fluorescenční protilátková technika MeSH
- fosforylace účinky léků MeSH
- Janus kinasy metabolismus MeSH
- kinetika MeSH
- makrofágy cytologie účinky léků metabolismus ultrastruktura MeSH
- mitochondrie účinky léků metabolismus ultrastruktura MeSH
- mitogenem aktivovaná proteinkinasa 8 metabolismus MeSH
- myši MeSH
- ras proteiny metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- ribozomy účinky léků metabolismus ultrastruktura MeSH
- signální transdukce * účinky léků MeSH
- T-2 toxin farmakologie MeSH
- transkripční faktor STAT3 metabolismus MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The present study was designed to examine effects of Sinomenine (SM) on glioma cells growth in vivo and in vitro. Cells growth and apoptosis were detected by MTT assay, TUNEL assay and flow cytometric analysis. In the study, SM treatment led to growth inhibition on a series of glioma cell lines, including U87, U373, U251, Hs683 and T98G. SM prevented U87 growth in the nude mice as well. Inhibitory effects of SM on U87 cells proliferation in vitro and in vivo were more effective than that of temozolomide (TMZ), and SM has synergistic effects with TMZ in the glioma therapy. SM induced apoptotic death in U87 cells via activation of caspase-3, caspase-8 and caspase-9, and down-regulation of HIAP, Bcl-2 and survivin. Moreover, we observed SM decreased the expression of phosphorylated STAT3 (p-STAT3) both in vivo and in vitro. Interestingly, using a specific activator of STAT3, we demonstrated overexpression of p-STAT3 impaired, SM mediated growth inhibition and apoptosis induction in the U87 cells. In summary, our results indicate SM induced growth suppression of human glioma cells through inhibiting phosphorylation of STAT3.
- MeSH
- alkaloidy farmakologie terapeutické užití MeSH
- apoptóza genetika imunologie účinky léků MeSH
- astrocyty účinky léků MeSH
- gliom farmakoterapie patologie ultrastruktura MeSH
- kaspasy analýza metabolismus MeSH
- kultivované buňky MeSH
- nádorové buněčné linie imunologie metabolismus účinky léků MeSH
- signální transdukce MeSH
- Sinomenium chemie MeSH
- techniky in vitro MeSH
- transkripční faktor STAT3 antagonisté a inhibitory metabolismus účinky léků MeSH
Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.
- MeSH
- diabetes mellitus 2. typu * MeSH
- lidé MeSH
- lokální recidiva nádoru MeSH
- metformin * farmakologie MeSH
- mTORC1 metabolismus MeSH
- myši MeSH
- nádory prostaty * genetika patologie MeSH
- proteinkinasy aktivované AMP metabolismus MeSH
- transkripční faktor STAT3 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Adiponectin (APN), an adipose tissue-excreted adipokine, plays protective roles in metabolic and cardiovascular diseases. In this study, the effects and mechanisms of APN on biological functions of rat vascular endothelial progenitor cells (VEPCs) were investigated in vitro. After administrating APN in rat VEPCs, the proliferation was measured by methyl thiazolyl tetrazolium (MTT) method, the apoptotic rate was test by Flow cytometry assay, mRNA expression of B-cell lymphoma-2 (Bcl-2) and vascular endothelial growth factor (VEGF) was determined by real-time reverse transcriptase polymerase chain reaction (RT-PCR), and protein expression of mechanistic target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3) and phospho-STAT3 (pSTAT3) was analyzed by Western blot. It was suggested that APN promoted the optical density (OD) value of VEPCs, enhanced mRNA expression of Bcl-2 and VEGF, and inhibited cell apoptotic rate. Furthermore, protein expression of pSTAT3 was also increased in the presence of APN. Moreover, APN changed-proliferation, apoptosis and VEGF expression of VEPCs were partially suppressed after blocking the mTOR-STAT3 signaling pathway by the mTOR inhibitor XL388. It was indicated that APN promoted biological functions of VEPCs through targeting the mTOR-STAT3 signaling pathway.
- MeSH
- adiponektin farmakologie MeSH
- buněčné linie MeSH
- cévní endotel účinky léků metabolismus MeSH
- endoteliální progenitorové buňky účinky léků fyziologie MeSH
- krysa rodu rattus MeSH
- proliferace buněk účinky léků fyziologie MeSH
- signální transdukce účinky léků fyziologie MeSH
- sulfony farmakologie MeSH
- TOR serin-threoninkinasy antagonisté a inhibitory biosyntéza MeSH
- transkripční faktor STAT3 antagonisté a inhibitory biosyntéza MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The occurrence and development of lung cancer is closely related to inflammation. Thus, we conducted the present study to investigate the effects of IL-37 (Interleukin 37), a newly identified anti-inflammatory factor, on non-small cell lung cancer (NSCLC), which accounts for about 85% of all lung cancers. To address the function of IL-37 in NSCLC, we first evaluated IL-37 expression in the human NSCLC tissues; then the IL-37 function was assessed in vitro and in vivo in a xenografted lung tumor model. IL-37 was barely expressed in the NSCLC tissue but highly expressed in the adjacent normal tissue. This expression profile was validated by ELISA (Enzyme-linked immunoassay), western blot and immunohistochemical staining. Recombinant IL-37 could suppress cell migration, invasion and proliferation and promote cell apoptosis in NSCLC cell line A549 and SK-MES-1. IL-37 inhibited the IL-6/STAT3 pathway and also the downstream targets Bcl-2, NEDD9 and Cyclin D1. Overexpressing IL-6 or constitutive active STAT3 eliminated the anti-tumor effects of IL-37. Furthermore, IL-37 expression in vivo could inhibit the cancer development. Our results showed that IL-37 plays an inhibitory role in lung cancer development, possibly through IL-6/STAT3 pathway.
- MeSH
- interleukin-1 genetika metabolismus MeSH
- lidé MeSH
- mediátory zánětu metabolismus MeSH
- nádorová transformace buněk imunologie MeSH
- nemalobuněčný karcinom plic * genetika metabolismus patologie MeSH
- receptory interleukinu-6 antagonisté a inhibitory genetika metabolismus MeSH
- signální transdukce MeSH
- transkripční faktor STAT3 antagonisté a inhibitory genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH