Major and trace elements
Dotaz
Zobrazit nápovědu
Correlative imaging of cutaneous tumors provides additional information to the standard histopathologic examination. However, the joint progress in the establishment of analytical techniques, such as Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in clinical practice is still limited. Their combination provides complementary information as it is also shown in our study in terms of major biotic (Ca, Mg, and P) and trace (Cu and Zn) elements. To elucidate changes in the elemental composition in tumors, we have compiled a set of malignant tumors (Squamous Cell Carcinoma, Basal Cell Carcinoma, Malignant Melanoma, and Epithelioid Angiosarcoma), one benign tumor (Pigmented Nevus) and one healthy-skin sample. The data processing was based on a methodological pipeline involving binary image registration and affine transformation. Thus, our paper brings a feasibility study of a practical methodological concept that enables us to compare LIBS and LA-ICP-MS results despite the mutual spatial distortion of original elemental images. Moreover, we also show that LIBS could be a sufficient pre-screening method even for a larger number of samples according to the speed and reproducibility of the analyses. Whereas LA-ICP-MS could serve as a ground truth and reference technique for preselected samples.
- MeSH
- bazocelulární karcinom diagnostické zobrazování MeSH
- hmotnostní spektrometrie metody MeSH
- laserová terapie MeSH
- lasery MeSH
- lidé MeSH
- melanom diagnostické zobrazování patologie MeSH
- nádory kůže * diagnostické zobrazování patologie MeSH
- pigmentový névus diagnostické zobrazování MeSH
- spektrální analýza metody MeSH
- spinocelulární karcinom diagnostické zobrazování patologie MeSH
- stopové prvky analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND OBJECTIVE: Yeasts have the remarkable capability to transform and integrate inorganic selenium into their cellular structures, thereby enhancing its bioavailability and reducing its toxicity. In recent years, yeasts have attracted attention as potential alternative sources of protein. METHODS: This study explores the selenium accumulation potential of two less explored yeast strains, namely the probiotic Saccharomyces boulardii CCDM 2020 and Pichia fermentas CCDM 2012, in comparison to the extensively studied Saccharomyces cerevisiae CCDM 272. Our investigation encompassed diverse stress conditions. Subsequently, the selenized yeasts were subjected to an INFOGEST gastrointestinal model. The adherence and hydrophobicity were determined with undigested cells RESULTS: Stress conditions had an important role in influencing the quantity and size of selenium nanoparticles (SeNPs) generated by the tested yeasts. Remarkably, SeMet synthesis was limited to Pichia fermentas CCDM 2012 and S. boulardii CCDM 2020, with S. cerevisiae CCDM 272 not displaying SeMet production at all. Throughout the simulated gastrointestinal digestion, the most substantial release of SeCys2, SeMet, and SeNPs from the selenized yeasts occurred during the intestinal phase. Notably, exception was found in strain CCDM 272, where the majority of particles were released during the oral phase. CONCLUSION: The utilization of both traditional and non-traditional selenized yeast types, harnessed for their noted functional attributes, holds potential for expanding the range of products available while enhancing their nutritional value and health benefits.
BACKGROUND: Acquired calcified aortic valve stenosis is the most common valve disease in adulthood. In the etiopathogenesis of this complex pathology, the importance of inflammation is mentioned, in which non-infectious influences represented by the biological effects of metal pollutants may participate. The main goal of the study was to determine the concentration of 21 metals and trace elements-aluminium (Al), barium (Ba), cadmium (Cd), calcium (Ca), chrome (Cr), cobalt (Co), copper (Cu), gold (Au), lead (Pb), magnesium (Mg), mercury (Hg), molybdenum (Mo), nickel (Ni), phosphorus (P), selenium (Se), strontium (Sr), sulfur (S), tin (Sn), titanium (Ti), vanadium (V) and zinc (Zn)-in the tissue of calcified aortic valves and to compare them with the concentrations of the same elements in the tissue of healthy aortic valves in the control group. MATERIAL AND METHODS: The study group consisted of 49 patients (25 men, mean age: 74) with acquired, severe, calcified aortic valve stenosis with indicated heart surgery. The control group included 34 deceased (20 men, median age: 53) with no evidence of heart disease. Calcified valves were explanted during cardiac surgery and deep frozen. Similarly, the valves of the control group were removed. All valves were lyophilized and analyzed by inductively coupled plasma mass spectrometry. The concentrations of selected elements were compared by means of standard statistical methods. RESULTS: Calcified aortic valves contained significantly higher (p < 0.05) concentrations of Ba, Ca, Co, Cr, Mg, P, Pb, Se, Sn, Sr and Zn and-in contrast-lower concentrations of Cd, Cu, Mo, S and V than valves of the control group. Significant positive correlations of concentrations between the pairs Ca-P, Cu-S and Se-S and strong negative correlations between the elements Mg-Se, P-S and Ca-S were found in the affected valves. CONCLUSION: Aortic valve calcification is associated with increased tissue accumulation of the majority of the analyzed elements, including metal pollutants. Some exposure factors may increase their accumulation in the valve tissue. A relationship between exposure to environmental burden and the aortic valve calcification process cannot be ruled out. Advances in histochemical and imaging techniques allowing imaging of metal pollutants directly in valve tissue may represent an important future perspective.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The pan-European human biomonitoring initiative HBM4EU targets the harmonization of human biomonitoring (HBM) procedures and data for both environmental and occupational exposure, including chromium. The determination of chromium in urine (U-Cr), plasma (P-Cr) and whole blood (WB-Cr) is a common HBM application in employees occupationally exposed to chromium (VI) compounds. METHODS: European laboratories which have registered as candidate laboratories for chromium analysis within HBM4EU were invited to participate in a quality assurance/qualitycontrol (QA/QC) programme comprising interlaboratory comparison investigations (ICI) for the parameters U-Cr, P-Cr and WB-Cr. Participating laboratories received two samples of different concentrations in each of four rounds and were asked to analyse the samples using their standard analytical procedure. The data were evaluated by the Z-score approach and were reported to the participants after each round. RESULTS: The majority of the 29 participating laboratories obtained satisfactory results, although low limits of quantification were required to quantify chromium concentrations in some of the ICI materials. The robust relative standard deviation of the participants' results (study RSDR) obtained from all ICI runs ranged from 6 to 16 % for U-Cr, 7-18 % for P-Cr and 4-47 % for WB-Cr. The application of both inductively coupled plasma mass spectrometry (ICP-MS) and electrothermal atomic absorption spectrometry (EAAS) appeared appropriate for the determination of chromium in urine, plasma and whole blood with regard to occupational exposure levels. CONCLUSION: This QA/QC programme succeeded in establishing a network of laboratories with high analytical comparability and accuracy for the analysis of chromium across Europe.
- MeSH
- biologický monitoring * MeSH
- chrom analýza MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- pracovní expozice * analýza MeSH
- spektrofotometrie atomová MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The content of major- and trace elements in wild-growing mushrooms has been subject to numerous studies, but the data on long-term trends in this regard are scarce. The aim of research was to determine the content of 34 elements in four edible mushroom species Boletus edulis, Imleria badia, Leccinum scabrum and Macrolepiota procera, and associated soil collected from Polish forests between 1974 and 2019. As initially hypothesized, the element concentration in the studied soil revealed an increasing trend and was positively correlated with their levels found in fruit bodies. Bioconcentrafion Factor values exceeding 1 were documented for all mushroom species for K, P, Ag, Cd, Cu, Hg, and Zn. When compared to the Adequate Intakes, all the mushroom species were found to be a good dietary source of K, P, and Zn (range of 6260-8690, 6260-8690 and 97-135 mg kg-1 dry weight (dw), respectively), and B. edulis and I. badia a moderate source of Fe (mean 71.5 and 76.5 mg kg-1 dw, respectively), B. edulis of Mn and Mo (mean 20.0 and 0.42 mg kg-1 dw, respectively), while L. scabrum and M. procera a source of Cu. Consumption of the studied mushrooms would not lead to significant exposure to Al, As, Cr, or Ni. Considering that wild mushrooms will continue to be collected in Poland, one should bear in mind that they are a limited source of minerals in the human diet while their frequent, regular consumption, associated with exposure to selected toxic elements, should not be recommended.
- MeSH
- Agaricales * MeSH
- Basidiomycota MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- nutriční hodnota MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
It has been known since the 1970s that differences exist in the profile of element content in wild-growing mushroom species, although knowledge of the role of mushroom species/families as determinants in the accumulation of diverse element remains limited. The aim of this study was to determine the content of 63 mineral elements, divided into six separate groups in the fruit bodies of 17 wild-growing mushroom species. The mushrooms, growing in widely ranging types of soil composition, were collected in Poland in 2018. Lepista nuda and Paralepista gilva contained not only the highest content of essential major (531 and 14,800 mg kg-1, respectively of Ca and P) and trace elements (425 and 66.3 mg kg-1, respectively of Fe and B) but also a high content of trace elements with a detrimental health effect (1.39 and 7.29 mg kg-1, respectively of Tl and Ba). A high content of several elements (Al, B, Ba, Bi, Ca, Er, Fe, Mg, Mo, P, Sc, Ti or V) in L. nuda, Lepista personata, P. gilva and/or Tricholoma equestre fruit bodies belonging to the Tricholomataceae family suggests that such species may be characterised by the most effective accumulation of selected major or trace elements. On the other hand, mushrooms belonging to the Agaricaceae family (Agaricus arvensis, Coprinus comatus and Macrolepiota procera) were characterised by significant differences in the content of all determined elements jointly, which suggests that a higher content of one or several elements is mushroom species-dependent. Graphical abstract.
Clearwater Mesa (James Ross Island, northeast Antarctic Peninsula) provides a unique opportunity to study solute dynamics and geochemical weathering in the pristine lacustrine systems of a high latitude environment. In order to determine major controls on the solute composition of these habitats, a geochemical survey was conducted on 35 lakes. Differences between lakes were observed based on measured physico-chemical parameters, revealing neutral to alkaline waters with total dissolved solids (TDS) < 2500 mg L-1. Katerina and Trinidad-Tatana systems showed an increase in their respective TDS, total organic carbon values, and finner sediments from external to internal lakes, indicating an accumulation of solutes due to weathering. Norma and Florencia systems exhibited the most diluted and circumneutral waters, likely from the influence of glacier and snow melt. Finally, isolated lakes presented large variability in TDS values, indicating weathering and meltwater contributions at different proportions. Trace metal abundances revealed a volcanic mineral weathering source, except for Pb and Zn, which could potentially indicate atmospheric inputs. Geochemical modelling was also conducted on a subset of connected lakes to gain greater insight into processes determining solute composition, resulting in the weathering of salts, carbonates and silicates with the corresponding generation of clays. We found CO2 consumption accounted for 20-30% of the total species involved in weathering reactions. These observations allow insights into naturally occurring geochemical processes in a pristine environment, while also providing baseline data for future research assessing the impacts of anthropogenic pollution and the effects of climate change.
- MeSH
- ekosystém MeSH
- geologické sedimenty chemie MeSH
- jezera chemie MeSH
- klimatické změny MeSH
- ledový příkrov chemie MeSH
- minerály analýza MeSH
- monitorování životního prostředí metody MeSH
- olovo analýza MeSH
- organické látky analýza MeSH
- počasí MeSH
- stopové prvky analýza MeSH
- uhličitany analýza MeSH
- zinek analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Antarktida MeSH
- Trinidad a Tobago MeSH
... Bender -- 11.3 Mineralsand trace elements 1871 -- Katherine Younger -- 11.4 Severe malnutrition 1880 ... ... Cox -- 12.6 Lipid disorders 2055 Jaim in i Cegla and James Scott -- 12.7 Trace metal disorders 2098 - ... ... Brown -- 17.4 Assessing and preparing patients with medical conditions for major surgery 3860 -- Tom ...
Sixth edition 4 svazky : ilustrace ; 29 cm
- MeSH
- vnitřní lékařství MeSH
- Publikační typ
- učebnice MeSH
- Konspekt
- Lékařské vědy. Lékařství
- NLK Obory
- vnitřní lékařství
- NLK Publikační typ
- kolektivní monografie
Risk and essential elements were determined in fruiting bodies of wild growing edible mushrooms Chlorophyllum rhacodes, Suillus grevillei, Imleria badia, and Xerocomellus chrysenteron collected in an unpolluted site in South Bohemia, the Czech Republic. The elements were also determined in underlying soils and the bioconcentration factors were calculated. The analyses revealed that C. rhacodes accumulated Ag, Cu, Rb, Se, Zn, As, Cd, and Tl. On the other hand, S. grevillei accumulated Cd, Rb, Ag, Se, and Cs. I. badia and X. chrysenteron strongly accumulated Rb, Cs, and Ag; these species showed the ability to accumulate Cu and Zn as well. Contents of detrimental CrVI were in all cases below the quantification limit (0.003 mg kg-1 dry matter). Studied mushroom species (mainly C. rhacodes) accumulated some toxic elements. However, no considerable effect on human health is expected since they are usually consumed as a delicacy and do not represent a major component of diet.
- MeSH
- Agaricales chemie MeSH
- hodnocení rizik MeSH
- jedlé rostliny chemie MeSH
- plodnice hub chemie MeSH
- stopové prvky analýza metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH