Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
- MeSH
- Antioxidants metabolism MeSH
- Bioaccumulation MeSH
- Environmental Pollutants toxicity MeSH
- Humans MeSH
- Oxidative Stress * drug effects MeSH
- Metals, Heavy * toxicity MeSH
- Environmental Exposure adverse effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The small-molecule alkaloid halofuginone (HF) is obtained from febrifugine. Recent studies on HF have aroused widespread attention owing to its universal range of noteworthy biological activities and therapeutic functions, which range from parasite infections and fibrosis to autoimmune diseases. In particular, HF is believed to play an excellent anticancer role by suppressing the proliferation, adhesion, metastasis, and invasion of cancers. This review supports the goal of demonstrating various anticancer effects and molecular mechanisms of HF. In the studies covered in this review, the anticancer molecular mechanisms of HF mainly included transforming growth factor-β (TGF-β)/Smad-3/nuclear factor erythroid 2-related factor 2 (Nrf2), serine/threonine kinase proteins (Akt)/mechanistic target of rapamycin complex 1(mTORC1)/wingless/integrated (Wnt)/β-catenin, the exosomal microRNA-31 (miR-31)/histone deacetylase 2 (HDAC2) signaling pathway, and the interaction of the extracellular matrix (ECM) and immune cells. Notably, HF, as a novel type of adenosine triphosphate (ATP)-dependent inhibitor that is often combined with prolyl transfer RNA synthetase (ProRS) and amino acid starvation therapy (AAS) to suppress the formation of ribosome, further exerts a significant effect on the tumor microenvironment (TME). Additionally, the combination of HF with other drugs or therapies obtained universal attention. Our results showed that HF has significant potential for clinical cancer treatment.
- Publication type
- Journal Article MeSH
- Review MeSH
Nitro-fatty acids (NO2FAs) are endogenously produced electrophiles and NRF2 activators with therapeutic potential. We developed a synthetic protocol combining a Henry reaction and base-promoted β-elimination, yielding ultrapure regio/stereoisomers of nitro-stearic (NO2SA), nitro-oleic (NO2OA), and conjugated/bis-allylic nitro-linoleic (NO2LA) acids. These were tested for NRF2 pathway activation in bone marrow cells under different oxygen conditions. We observed that 9- and 10-NO2OA, and 10-NO2LA increased NRF2 stabilization under hypoxia, while 9- and 10-NO2OA significantly upregulated Hmox1 and Gclm at all oxygen levels. 9- and 10-NO2OA enhanced HO-1 and GCLM proteins independently of oxygen, while 10-NO2LA was oxygen-dependent, boosting HO-1 under hypoxia and GCLM under ambient conditions. Moreover, 10-NO2OA and 10-NO2LA induced NRF2 nuclear translocation. In contrast, the saturated 10-NO2SA, which has lower electron-acceptor ability, was inactive. In summary, these findings suggest the biological activity of NO2FAs is dependent on oxygen level, which could be used in future research of other oxidative stress-dependent pathways.
- MeSH
- Nitro Compounds * pharmacology chemical synthesis chemistry MeSH
- NF-E2-Related Factor 2 * metabolism MeSH
- Heme Oxygenase-1 metabolism MeSH
- Cell Hypoxia MeSH
- Linoleic Acids chemical synthesis chemistry pharmacology MeSH
- Oxygen metabolism MeSH
- Fatty Acids * pharmacology chemical synthesis chemistry MeSH
- Mice MeSH
- Signal Transduction drug effects MeSH
- Stereoisomerism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Chronic obstructive pulmonary disease (COPD) continues to be the world's primary cause of morbidity and mortality. The main mechanism driving the pathogenesis of COPD is oxidative stress. Antioxidant genes, regulated by the Nrf2/ARE signaling pathway, play a protective role against oxidative stress. Unfortunately, this pathway appears to be dysregulated in COPD, leading to decreased expression of antioxidant genes and persistent oxidative stress. We reviewed numerous studies measuring the expression of antioxidant genes in COPD. We also focused on developments in methods used to study gene expression in COPD over time, along with measuring antioxidant gene expression in various cell types, and the potential use of antioxidant gene expression as a predictor of COPD progression. And last but not least we discussed the association of cigarette smoke exposure with antioxidant gene expression together with antioxidant treatment in COPD. Understanding the altered expression of antioxidant genes in COPD could help in treating COPD, as well as predicting its progression.
- Publication type
- Journal Article MeSH
- Review MeSH
Oxidative stress and chronic inflammation are important drivers in the pathogenesis and progression of many chronic diseases, such as cancers of the breast, kidney, lung, and others, autoimmune diseases (rheumatoid arthritis), cardiovascular diseases (hypertension, atherosclerosis, arrhythmia), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease), mental disorders (depression, schizophrenia, bipolar disorder), gastrointestinal disorders (inflammatory bowel disease, colorectal cancer), and other disorders. With the increasing demand for less toxic and more tolerable therapies, flavonoids have the potential to effectively modulate the responsiveness to conventional therapy and radiotherapy. Flavonoids are polyphenolic compounds found in fruits, vegetables, grains, and plant-derived beverages. Six of the twelve structurally different flavonoid subgroups are of dietary significance and include anthocyanidins (e.g. pelargonidin, cyanidin), flavan-3-ols (e.g. epicatechin, epigallocatechin), flavonols (e.g. quercetin, kaempferol), flavones (e.g. luteolin, baicalein), flavanones (e.g. hesperetin, naringenin), and isoflavones (daidzein, genistein). The health benefits of flavonoids are related to their structural characteristics, such as the number and position of hydroxyl groups and the presence of C2C3 double bonds, which predetermine their ability to chelate metal ions, terminate ROS (e.g. hydroxyl radicals formed by the Fenton reaction), and interact with biological targets to trigger a biological response. Based on these structural characteristics, flavonoids can exert both antioxidant or prooxidant properties, modulate the activity of ROS-scavenging enzymes and the expression and activation of proinflammatory cytokines (e.g., interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), induce apoptosis and autophagy, and target key signaling pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2) and Bcl-2 family of proteins. This review aims to briefly discuss the mutually interconnected aspects of oxidative and inflammatory mechanisms, such as lipid peroxidation, protein oxidation, DNA damage, and the mechanism and resolution of inflammation. The major part of this article discusses the role of flavonoids in alleviating oxidative stress and inflammation, two common components of many human diseases. The results of epidemiological studies on flavonoids are also presented.
- MeSH
- Flavonoids * pharmacology chemistry therapeutic use metabolism MeSH
- Humans MeSH
- Neoplasms drug therapy metabolism pathology MeSH
- Neurodegenerative Diseases drug therapy metabolism MeSH
- Oxidative Stress * drug effects MeSH
- Inflammation * drug therapy metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Parkinson's disease (PD) is one of the most common progressive neurodegenerative pathologies that leads to dopaminergic deficiency and motor manifestations. Alpha-synuclein aggregation is a characteristic hallmark of PD pathogenesis. These aggregates facilitate the formation of Lewy bodies and degeneration. The epidemiological evidence demonstrates a definitive association of diabetes with PD risk. Considering this, many antidiabetic agents such as GLP-1 agonists and DPP-4 inhibitors are being explored as alternative PD therapeutics. This study evaluated the neuroprotective effect of the DPP-4 inhibitor sitagliptin mediated by the PI3K/AKT and Nrf2 pathways in PD models. In silico studies were conducted to determine the binding affinity, stability, and ADMET properties of DPP-4 inhibitors with target proteins. Sitagliptin (15 mg/kg p.o.) was administered in rotenone (30 mg/kg p.o. for 28 days)-induced and MPTP/P (25 mg/kg i.p. MPTP and 100 mg/kg probenecid i.p. twice a week for 5 weeks)-induced PD mouse (C57/BL6) models. Neurobehavioral assessments were carried out throughout the study. Biochemical (GSH, MDA), molecular estimations (AKT, Nrf2, PI3K, GSK-3β, GLP1, CREB, BDNF, NF-κB, alpha-synuclein), histopathological studies, and immunohistochemistry were carried out at the end of the study. The in silico studies demonstrate better binding, stability, and ADMET profile of sitagliptin with both target proteins. Sitagliptin restored cognitive and motor deficits in both rotenone- and MPTP/P-induced mouse models. There was upregulation of PI3K, AKT, Nrf2, CREB, and BDNF levels and downregulation of GSK-3β, NF-κB, and alpha-synuclein levels in both models after treatment with sitagliptin. However, GLP1 levels were not significantly restored, indicating a GLP1-independent mechanism. It also restored histopathological alterations and TH+ neuronal loss induced by rotenone and MPTP/P. These findings demonstrate that sitagliptin exhibits neuroprotective action mediated by upregulation of the PI3K/AKT and Nrf2 pathways in rotenone and MPTP/P mouse models of PD.
- MeSH
- NF-E2-Related Factor 2 * metabolism MeSH
- Phosphatidylinositol 3-Kinases metabolism MeSH
- Dipeptidyl-Peptidase IV Inhibitors * pharmacology MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Neuroprotective Agents * pharmacology MeSH
- Parkinsonian Disorders * metabolism drug therapy MeSH
- Proto-Oncogene Proteins c-akt * metabolism MeSH
- Rotenone MeSH
- Signal Transduction drug effects MeSH
- Sitagliptin Phosphate * pharmacology MeSH
- Up-Regulation drug effects MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
To explore the effects and underlying mechanisms of Mdivi-1 on three common clinical models of acute kidney injury (AKI). Three common AKI cell models were constructed, classified into the control group (human renal tubular epithelial cells [HK-2] cells), the Iohexol group (HK-2 cells treated with Iohexol), the Genta group (HK-2 cells treated with Gentamicin), and the Cis group (HK-2 cells treated with Cisplatin). To explore the optimal protective concentration of Mdivi-1 for each AKI cell model, the experimental design consisted of the following seven groups: the control group (HK-2 cells cultured in medium), three injury groups (HK-2 cells subjected to Iohexol, Gentamicin, or Cisplatin), and the corresponding protection groups (with a certain concentration of Mdivi-1 added to each injury group). Cellular survival and apoptosis, reactive oxygen species (ROS) levels, and the expression of recombinant Sirtuin 3 (SIRT3) in each group were measured. Mitochondrial fission and fusion dynamics in cells were observed under an electron microscope. To explore relevant pathways, the changes in relevant pathway proteins were analyzed through Western blotting. The half maximal inhibitory concentration (IC50) values were 150.06 mgI/ml at 6 h in the Iohexol group, 37.88 mg/ml at 24 h in the Gentamicin group, and 13.48 microM at 24 h in the Cisplatin group. Compared with the control group, the three injury groups showed increased cell apoptosis rates and higher expressions of apoptotic proteins in HK-2 cells, with an accompanying decrease in cell migration. After the addition of corresponding concentrations of Mdivi-1, the optimal concentrations were 3 μM in the Iohexo-3 group, 1 microM in the Genta-1 group, and 5 μM in the Cis-5 group, HK-2 cells showed the highest survival rate, reduced apoptosis, decreased mitochondrial ROS and SIRT3 expression, and reduced mitochondrial fission and autophagy when compared with each injury group. Further verification with Western blot analysis after the addition of Mdivi-1 revealed a reduction in the expressions of mitochondrial fission proteins DRP1, Nrf2, SIRT3, Caspase-3, Jun N-terminal Kinase (JNK)/P-JNK, NF-kappaB, Bcl2, and autophagic protein P62, as well as reduced ROS levels. Mdivi-1 had protective effects on the three common AKI cell models by potentially reducing mitochondrial fission in cells and inhibiting the production of ROS through the mediation of the NF- B/JNK/SIRT3 signaling pathway, thereby exerting protective effects. Key words AKI, Cisplatin, Gentamicin, Iohexol, Mdivi-1.
- MeSH
- Acute Kidney Injury * metabolism pathology drug therapy MeSH
- Apoptosis drug effects MeSH
- Cell Line MeSH
- Humans MeSH
- MAP Kinase Signaling System drug effects physiology MeSH
- Mitochondrial Dynamics * drug effects physiology MeSH
- NF-kappa B * metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Signal Transduction * drug effects MeSH
- Sirtuin 3 * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Neuroinflammation is a key factor in the progression of neurodegenerative diseases, driven by the dysregulation of molecular pathways and activation of the brain's immune system, resulting in the release of pro-inflammatory and oxidative molecules. This chronic inflammation is exacerbated by peripheral leukocyte infiltration into the central nervous system. Medicinal plants, with their historical use in traditional medicine, have emerged as promising candidates to mitigate neuroinflammation and offer a sustainable alternative for addressing neurodegenerative conditions in a green healthcare framework. This review evaluates the effects of medicinal plants on neuroinflammation, emphasizing their mechanisms of action, effective dosages, and clinical implications, based on a systematic search of databases such as PubMed, SCOPUS, and Web of Science. The key findings highlight that plants like Cleistocalyx nervosum var. paniala, Curcuma longa, Cannabis sativa, and Dioscorea nipponica reduce pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), inhibit enzymes (COX-2 and iNOS), and activate antioxidant pathways, particularly Nrf2. NF-κB emerged as the primary pro-inflammatory pathway inhibited across studies. While the anti-inflammatory potential of these plants is significant, the variability in dosages and phytochemical compositions limits clinical translation. Here, we highlight that medicinal plants are effective modulators of neuroinflammation, underscoring their therapeutic potential. Future research should focus on animal models, standardized protocols, and safety assessments, integrating advanced methodologies, such as genetic studies and nanotechnology, to enhance their applicability in neurodegenerative disease management.
- Publication type
- Journal Article MeSH
- Review MeSH
INTRODUCTION: Studies have correlated living close to major roads with Alzheimer's disease (AD) risk. However, the mechanisms responsible for this link remain unclear. METHODS: We exposed olfactory mucosa (OM) cells of healthy individuals and AD patients to diesel emissions (DE). Cytotoxicity of exposure was assessed, mRNA, miRNA expression, and DNA methylation analyses were performed. The discovered altered pathways were validated using data from the human population-based Rotterdam Study. RESULTS: DE exposure resulted in an almost four-fold higher response in AD OM cells, indicating increased susceptibility to DE effects. Methylation analysis detected different DNA methylation patterns, revealing new exposure targets. Findings were validated by analyzing data from the Rotterdam Study cohort and demonstrated a key role of nuclear factor erythroid 2-related factor 2 signaling in responses to air pollutants. DISCUSSION: This study identifies air pollution exposure biomarkers and pinpoints key pathways activated by exposure. The data suggest that AD individuals may face heightened risks due to impaired cellular defenses. HIGHLIGHTS: Healthy and AD olfactory cells respond differently to DE exposure. AD cells are highly susceptible to DE exposure. The NRF2 oxidative stress response is highly activated upon air pollution exposure. DE-exposed AD cells activate the unfolded protein response pathway. Key findings are also confirmed in a population-based study.
- MeSH
- Alzheimer Disease * genetics metabolism MeSH
- Olfactory Mucosa metabolism MeSH
- Epigenomics MeSH
- NF-E2-Related Factor 2 genetics metabolism MeSH
- Air Pollutants adverse effects MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Methylation * MeSH
- MicroRNAs metabolism genetics MeSH
- Aged MeSH
- Gene Expression Profiling MeSH
- Transcriptome MeSH
- Vehicle Emissions * toxicity MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Repetitive transcranial magnetic stimulation (rTMS) represents a non-invasive therapeutic modality acknowledged for augmenting neurological function recovery following stroke. Nonetheless, uncertainties remain regarding its efficacy in promoting cognitive function recovery in patients diagnosed with vascular dementia (VD). In this study, VD was experimentally induced in a rat model utilizing the bilateral common carotid artery occlusion method. Following a recuperation period of seven days, rats were subjected to high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) at a frequency of 10 Hz. Cognitive function was assessed utilizing the Morris water maze test, and the levels of IL-6, TNF-alpha, SOD, GSH, MDA, and Fe2+ in cerebral tissue were quantitatively analyzed through enzyme-linked immunosorbent assay. Moreover, the gene and protein expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPx4) were meticulously investigated via quantitative polymerase chain reaction (qPCR) and Western blotting techniques. The use of HF-rTMS notably augmented cognitive function in rats with VD, concomitantly reducing neuroinflammation, oxidative stress, and ferroptosis within the brain. The group subjected to HF-rTMS demonstrated an increase in the levels of both proteins and genes associated with Nrf2 and GPx4, in comparison to the VD group. These results highlight the potential of HF-rTMS treatment in enhancing cognitive function in rats diagnosed with VD through the modulation of the Nrf2/GPx4 signaling pathway. This modulation, in turn, mitigates processes linked with neuroinflammation, oxidative stress, and ferroptosis. Nevertheless, additional studies are essential to comprehensively elucidate the underlying mechanisms and clinical implications of HF-rTMS treatment in the treatment of VD.
- MeSH
- NF-E2-Related Factor 2 * metabolism MeSH
- Phospholipid Hydroperoxide Glutathione Peroxidase * metabolism MeSH
- Cognition * physiology MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- Oxidative Stress MeSH
- Rats, Sprague-Dawley MeSH
- Rats, Wistar MeSH
- Signal Transduction * MeSH
- Transcranial Magnetic Stimulation * methods MeSH
- Dementia, Vascular * metabolism therapy psychology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH