Supervised Learning
Dotaz
Zobrazit nápovědu
The scarcity of high-quality annotations in many application scenarios has recently led to an increasing interest in devising learning techniques that combine unlabeled data with labeled data in a network. In this work, we focus on the label propagation problem in multilayer networks. Our approach is inspired by the heat diffusion model, which shows usefulness in machine learning problems such as classification and dimensionality reduction. We propose a novel boundary-based heat diffusion algorithm that guarantees a closed-form solution with an efficient implementation. We experimentally validated our method on synthetic networks and five real-world multilayer network datasets representing scientific coauthorship, spreading drug adoption among physicians, two bibliographic networks, and a movie network. The results demonstrate the benefits of the proposed algorithm, where our boundary-based heat diffusion dominates the performance of the state-of-the-art methods.
- MeSH
- algoritmy MeSH
- řízené strojové učení * MeSH
- strojové učení MeSH
- vysoká teplota * MeSH
- Publikační typ
- časopisecké články MeSH
Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.
- MeSH
- databáze faktografické MeSH
- lidé MeSH
- registrace * MeSH
- reprodukovatelnost výsledků MeSH
- řízené strojové učení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In this paper, we propose an integrated biologically inspired visual collision avoidance approach that is deployed on a real hexapod walking robot. The proposed approach is based on the Lobula giant movement detector (LGMD), a neural network for looming stimuli detection that can be found in visual pathways of insects, such as locusts. Although a superior performance of the LGMD in the detection of intercepting objects has been shown in many collision avoiding scenarios, its direct integration with motion control is an unexplored topic. In our work, we propose to utilize the LGMD neural network for visual interception detection with a central pattern generator (CPG) for locomotion control of a hexapod walking robot that are combined in the controller based on the long short-term memory (LSTM) recurrent neural network. Moreover, we propose self-supervised learning of the integrated controller to autonomously find a suitable setting of the system using a realistic robotic simulator. Thus, individual neural networks are trained in a simulation to enhance the performance of the controller that is then experimentally verified with a real hexapod walking robot in both collision and interception avoidance scenario and navigation in a cluttered environment.
- MeSH
- chování zvířat fyziologie MeSH
- chůze fyziologie MeSH
- kobylky fyziologie MeSH
- neuronové sítě MeSH
- řízené strojové učení MeSH
- robotika přístrojové vybavení MeSH
- učení vyhýbat se fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In response to our study, the commentary by Infanti et al. (2024) raised critical points regarding (i) the conceptualization and utility of the user-avatar bond in addressing gaming disorder (GD) risk, and (ii) the optimization of supervised machine learning techniques applied to assess GD risk. To advance the scientific dialogue and progress in these areas, the present paper aims to: (i) enhance the clarity and understanding of the concepts of the avatar, the user-avatar bond, and the digital phenotype concerning gaming disorder (GD) within the broader field of behavioral addictions, and (ii) comparatively assess how the user-avatar bond (UAB) may predict GD risk, by both removing data augmentation before the data split and by implementing alternative data imbalance treatment approaches in programming.
- MeSH
- avatar MeSH
- lidé MeSH
- netholismus * MeSH
- řízené strojové učení MeSH
- strojové učení * MeSH
- uživatelské rozhraní počítače MeSH
- videohry MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Loss of olfactory function is a typical acute coronavirus disease 2019 (COVID-19) symptom, at least in early variants of SARS-CoV2. The time that has elapsed since the emergence of COVID-19 now allows for assessing the long-term prognosis of its olfactory impact. Participants (n = 722) of whom n = 464 reported having had COVID-19 dating back with a mode of 174 days were approached in a museum as a relatively unbiased environment. Olfactory function was diagnosed by assessing odor threshold and odor identification performance. Subjects also rated their actual olfactory function on an 11-point numerical scale [0,...10]. Neither the frequency of olfactory diagnostic categories nor olfactory test scores showed any COVID-19-related effects. Olfactory diagnostic categories (anosmia, hyposmia, or normosmia) were similarly distributed among former patients and controls (0.86%, 18.97%, and 80.17% for former patients and 1.17%, 17.51%, and 81.32% for controls). Former COVID-19 patients, however, showed differences in their subjective perception of their own olfactory function. The impact of this effect was substantial enough that supervised machine learning algorithms detected past COVID-19 infections in new subjects, based on reduced self-awareness of olfactory performance and parosmia, while the diagnosed olfactory function did not contribute any relevant information in this context. Based on diagnosed olfactory function, results suggest a positive prognosis for COVID-19-related olfactory loss in the long term. Traces of former infection are found in self-perceptions of olfaction, highlighting the importance of investigating the long-term effects of COVID-19 using reliable and validated diagnostic measures in olfactory testing.
- MeSH
- anosmie diagnóza etiologie MeSH
- čich MeSH
- COVID-19 * MeSH
- lidé MeSH
- poruchy čichu * diagnóza MeSH
- řízené strojové učení MeSH
- RNA virová MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The goal of this research was to design a solution to detect non-reported incidents, especially severe incidents. To achieve this goal, we proposed a method to process electronic medical records and automatically extract clinical notes describing severe incidents. To evaluate the proposed method, we implemented a system and used the system. The system successfully detected a non-reported incident to the safety management department.
Automated sentiment analysis is becoming increasingly recognized due to the growing importance of social media and e-commerce platform review websites. Deep neural networks outperform traditional lexicon-based and machine learning methods by effectively exploiting contextual word embeddings to generate dense document representation. However, this representation model is not fully adequate to capture topical semantics and the sentiment polarity of words. To overcome these problems, a novel sentiment analysis model is proposed that utilizes richer document representations of word-emotion associations and topic models, which is the main computational novelty of this study. The sentiment analysis model integrates word embeddings with lexicon-based sentiment and emotion indicators, including negations and emoticons, and to further improve its performance, a topic modeling component is utilized together with a bag-of-words model based on a supervised term weighting scheme. The effectiveness of the proposed model is evaluated using large datasets of Amazon product reviews and hotel reviews. Experimental results prove that the proposed document representation is valid for the sentiment analysis of product and hotel reviews, irrespective of their class imbalance. The results also show that the proposed model improves on existing machine learning methods.
- MeSH
- algoritmy * MeSH
- emoce MeSH
- lidé MeSH
- neuronové sítě * MeSH
- sémantika MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The estimation of the speed of human motion from wearable IMU sensors is required in applications such as pedestrian dead reckoning. In this paper, we test deep learning methods for the prediction of the motion speed from raw readings of a low-cost IMU sensor. Each subject was observed using three sensors at the shoe, shin, and thigh. We show that existing general-purpose architectures outperform classical feature-based approaches and propose a novel architecture tailored for this task. The proposed architecture is based on a semi-supervised variational auto-encoder structure with innovated decoder in the form of a dense layer with a sinusoidal activation function. The proposed architecture achieved the lowest average error on the test data. Analysis of sensor placement reveals that the best location for the sensor is the shoe. Significant accuracy gain was observed when all three sensors were available. All data acquired in this experiment and the code of the estimation methods are available for download.
- MeSH
- bérec MeSH
- chodci * MeSH
- deep learning * MeSH
- lidé MeSH
- nositelná elektronika * MeSH
- pohyb těles MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Background: Classifying diseases into ICD codes has mainly relied on human reading a large amount of written materials, such as discharge diagnoses, chief complaints, medical history, and operation records as the basis for classification. Coding is both laborious and time consuming because a disease coder with professional abilities takes about 20 minutes per case in average. Therefore, an automatic code classification system can significantly reduce the human effort. Objectives: This paper aims at constructing a machine learning model for ICD-10 coding, where the model is to automatically determine the corresponding diagnosis codes solely based on free-text medical notes. Methods: In this paper, we apply Natural Language Processing (NLP) and Recurrent Neural Network (RNN) architecture to classify ICD-10 codes from natural language texts with supervised learning. Results: In the experiments on large hospital data, our predicting result can reach F1-score of 0.62 on ICD-10-CM code. Conclusion: The developed model can significantly reduce manpower in coding time compared with a professional coder.
- MeSH
- automatizované zpracování dat metody MeSH
- deep learning * MeSH
- elektronické zdravotní záznamy MeSH
- mezinárodní klasifikace nemocí * MeSH
- neuronové sítě MeSH
- strojové učení MeSH
- ukládání a vyhledávání informací metody statistika a číselné údaje MeSH
- vizualizace dat MeSH
- zpracování přirozeného jazyka MeSH
- Publikační typ
- práce podpořená grantem MeSH
Pathophysiological recordings of patients measured from various testing methods are frequently used in the medical field for determining symptoms as well as for probability prediction for selected diseases. There are numerous symptoms among the Parkinson's disease (PD) population, however changes in speech and articulation – is potentially the most significant biomarker. This article is focused on PD diagnosis classification based on their speech signals using pattern recognition methods (AdaBoost, Bagged trees, Quadratic SVM and k-NN). The dataset investigated in the article consists of 30 PD and 30 HC individuals' voice measurements, with each individual being represented with 2 recordings within the dataset. Training signals for PD and HC underwent an extraction of relatively well-discriminating features relating to energy and spectral speech properties. Model implementations included a 5-fold cross validation. The accuracy of the values obtained employing the models was calculated using the confusion matrix. The average value of the overall accuracy = 82.3 % and averaged AUC = 0.88 (min. AUC = 0.86) on the available data.