This review is focused on identification of bacterial species by their antigenes by barcoding oligonucleotides by application of magnetic micro and nanoparticles. In the first part of this review is discussed the structures and types of magnetic particles and their synthesis. In the next and the most important part we described the principle and the existing status of barcoding system and antigenes markers for identification of organisms such as animals, plants and microorganisms.
- Keywords
- biobarcode assay, magnetické mikročástice, DNA barkódování,
- MeSH
- Metal Nanoparticles * MeSH
- Magnetite Nanoparticles MeSH
- Magnetics * MeSH
- Molecular Probe Techniques MeSH
- Oligonucleotides MeSH
- Antibodies MeSH
- Oligonucleotide Array Sequence Analysis MeSH
- DNA Barcoding, Taxonomic * methods utilization MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Micro-computed tomography (micro-CT) is an exceptional imaging modality which is limited in visualizing soft biological tissues that need pre-examination contrasting steps, which can cause serious deformation to sizeable specimens like engorged ticks. The aim of this study was to develop a new technique to bypass these limitations and allow the imaging of fed ticks in their natural state. To accomplish this, adult Ixodes ricinus females were allowed to engorge in vitro on blood supplemented with PEGylated gold nanoparticles (PEG-AuNPs). In total, 73/120 females divided into 6 groups engorged on blood enriched with 0.07-2.16 mg PEG-AuNPs per ml of blood. No toxic effect was observed for any of the tested groups compared to the control group, in which 12/20 females engorged on clear blood. The ticks were scanned on a Bruker micro-CT SkyScan 1276. The mean radiodensity of the examined ticks exceeded 0 Hounsfield Units only in the case of the two groups with the highest concentration. The best contrast was observed in ticks engorged on blood with the highest tested concentration of 2.16 mg/mL PEG-AuNPs. In these ticks, the midgut and rectal sac were clearly visible. Also, the midgut lumen volume was computed from segmented image data. The reduction in midgut volume was documented during the egg development process. According to this pilot study, micro-CT of ticks engorged on blood supplemented with contrasting agents in vitro may reveal additional information regarding the engorged ticks' anatomy.
- MeSH
- Ixodes * MeSH
- Metal Nanoparticles * MeSH
- Blood MeSH
- X-Ray Microtomography methods MeSH
- Feeding Behavior MeSH
- Gold * MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Micro- and nanostructures prepared from biodegradable homopolymers and amphiphilic block copolymers (AmBCs) have found application as drug-delivery systems (DDSs). The ability to accumulate a drug is a very important parameter characterizing a given DDS. This work focuses on the impact of DDS size, the packing of polymer chains in the DDS, and drug - polymer matrix compatibility on the hydrophobic drug - loading capacity (DLC) of nano/microcarriers prepared from a biodegradable polymer or its copolymer. Using experimental measurements in combination with atomistic molecular dynamics simulations, an analysis of curcumin encapsulation in microspheres (MSs) from polylactide (PLA) homopolymer and nanoparticles (NPs) from PLA-block-poly(2-methacryloyloxyethylphosphorylcholine) AmBC was performed. The results show that curcumin has good affinity for the PLA matrix due to its hydrophobic nature. However, the DLC value is limited by the fact that curcumin only accumulates in the peripheral part of these structures. Such uneven drug distribution in the PLA matrix results from the non-homogeneous density of MSs (non-uniform packing of the polymer chains in the coil). The results also indicate that the MSs can retain a greater amount of hydrophobic drug compared to the NPs, which is associated with the formation of drug aggregates inside the PLA microparticles.
Production of particles and their adaptation in the pharmacology became an object of interest, and they are the currently introduced therapies based on the use of micro and nanoparticles. The use of gold particles is not an exception. This review has focused on the application of gold micro and nanoparticles in pharmacology and biomedicine. The particles can be used for diagnosis respective theranostic of cancer, rheumatoid arthritis and as antimicrobial means. Besides these applications, specifications of gold, gold particles, and colloidal gold manufacturing and their comparison with the solid gold, are described as well. This review is based on a survey of actual scientific literature.
- MeSH
- Anti-Inflammatory Agents chemistry pharmacology MeSH
- Anti-Infective Agents chemistry pharmacology MeSH
- Bacteria drug effects MeSH
- Biomedical Research MeSH
- Fungi drug effects MeSH
- Humans MeSH
- Neoplasms diagnosis drug therapy MeSH
- Nanoparticles chemistry MeSH
- Antineoplastic Agents chemistry pharmacology MeSH
- Arthritis, Rheumatoid diagnosis drug therapy MeSH
- Gold chemistry pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Due to their unique properties, such as controlled drug release and improved bioavailability, polymeric microparticles and nanoparticles (MPs and NPs) have gained considerable interest in the pharmaceutical industry. Nevertheless, the high costs associated with biodegradable polymers and the active pharmaceutical ingredients (APIs) used for treating serious diseases, coupled with the vast number of API-polymer combinations, make the search for effective API-polymer MPs and NPs a costly and time-consuming process. In this work, the correlation between the compatibility of selected model APIs (i.e., ibuprofen, naproxen, paracetamol, and indomethacin) with poly(lactide-co-glycolide) (PLGA) derived from respective binary phase diagrams and characteristics of prepared MPs and NPs, such as the drug loading and solid-state properties, was investigated to probe the possibility of implementing the modeling of API-polymer thermodynamic and kinetic phase behavior as part of rational design of drug delivery systems based on MPs and NPs. API-PLGA-based MPs and NPs were formulated using an emulsion-solvent evaporation technique and were characterized for morphology, mean size, zeta potential, drug loading, and encapsulation efficiency. The solid-state properties of the encapsulated APIs were assessed using differential scanning calorimetry and X-ray powder diffraction. The evaluated compatibility was poor for all considered API-PLGA pairs, which is in alignment with the experimental results showing low drug loading in terms of amorphous API content. At the same time, drug loading of the studied APIs in terms of amorphous content was found to follow the same trend as their solubility in PLGA, indicating a clear correlation between API solubility in PLGA and achievable drug loading. These findings suggest that API-polymer phase behavior modeling and compatibility screening can be employed as an effective preformulation tool to estimate optimum initial API concentration for MP and NP preparation or, from a broader perspective, to tune or select polymeric carriers offering desired drug loading.
In this work we have used X-ray micro-computed tomography (μCT) as a method to observe the morphology of 3D porous pure collagen and collagen-composite scaffolds useful in tissue engineering. Two aspects of visualizations were taken into consideration: improvement of the scan and investigation of its sensitivity to the scan parameters. Due to the low material density some parts of collagen scaffolds are invisible in a μCT scan. Therefore, here we present different contrast agents, which increase the contrast of the scanned biopolymeric sample for μCT visualization. The increase of contrast of collagenous scaffolds was performed with ceramic hydroxyapatite microparticles (HAp), silver ions (Ag(+)) and silver nanoparticles (Ag-NPs). Since a relatively small change in imaging parameters (e.g. in 3D volume rendering, threshold value and μCT acquisition conditions) leads to a completely different visualized pattern, we have optimized these parameters to obtain the most realistic picture for visual and qualitative evaluation of the biopolymeric scaffold. Moreover, scaffold images were stereoscopically visualized in order to better see the 3D biopolymer composite scaffold morphology. However, the optimized visualization has some discontinuities in zoomed view, which can be problematic for further analysis of interconnected pores by commonly used numerical methods. Therefore, we applied the locally adaptive method to solve discontinuities issue. The combination of contrast agent and imaging techniques presented in this paper help us to better understand the structure and morphology of the biopolymeric scaffold that is crucial in the design of new biomaterials useful in tissue engineering.
- MeSH
- Biocompatible Materials chemistry MeSH
- Durapatite chemistry MeSH
- Collagen chemistry MeSH
- Contrast Media MeSH
- Metal Nanoparticles chemistry MeSH
- X-Ray Microtomography * MeSH
- Silver chemistry MeSH
- Tissue Scaffolds chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Nanoparticles are finding increasing applications in diagnostics, imaging and therapeutics in medicine. Iron oxide nanoparticles (IONs) have received significant interest of scientific community due to their distinctive properties. For the first time, we have delivered IONs into germ cells in any species. Our results showed that sturgeon primordial germ cells (PGCs) delivered with IONs could be detected until seven days post fertilization (dpf) under fluorescent microscope and at 22 dpf by micro-CT. Delivery of IONs into cells could be helpful for studying germ cell biology and the improvement of germ cell-based bio-technologies as isolation of PGCs using magnetic activated cell sorting or application of hyperthermia for a host sterilization purpose. Intriguingly, in our study, we did not find any toxic effects of IONs on the survival and hatching rates of sturgeon embryos when compared with embryos injected with FITC-dextran only.
- MeSH
- Nanoparticles * MeSH
- Ovum metabolism MeSH
- X-Ray Microtomography MeSH
- Fishes metabolism MeSH
- Spermatozoa metabolism MeSH
- Ferric Compounds chemistry metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Microribonucleic acids (miRNAs) are short noncoding ribonucleic acids that have been linked with a multitude of human diseases including lung, breast, and hematological cancers. In this work, we present a novel, extremely sensitive assay for the label-free optical biosensor-based detection of miRNAs, which is based on the oligonucleotide-triggered release of nanoparticles from a sensor surface. We combine this assay (herein referred to as the nanoparticle-release (NPR) assay) with a surface plasmon resonance biosensor and show that the assay is able to enhance the specific sensor response associated with the binding of target miRNA while suppressing the interfering effects caused by the non-specific binding. We apply the assay to the detection of miRNAs related to myelodysplastic syndromes (miR-125b, miR-16) in blood plasma and demonstrate that the assay enables detection of miR-125b with a limit of detection (LOD) of 349 aM (corresponding to the lowest detectable amounts of 419 zmol). The achieved LOD is better by a factor of ∼100 when compared to the conventional nanoparticle-enhanced sandwich assay. Moreover, we demonstrate that the NPR assay may be combined with time-division multiplexing for the multiplexed miRNA detection.
- MeSH
- Biosensing Techniques * MeSH
- Metal Nanoparticles * MeSH
- Plasma MeSH
- Humans MeSH
- MicroRNAs * genetics MeSH
- Myelodysplastic Syndromes * diagnosis genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Prediction of poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticles' dissolution rates plays a significant role in pharmaceutical and medical industries. The prediction of PLGA dissolution rate is crucial for drug manufacturing. Therefore, a model that predicts the PLGA dissolution rate could be beneficial. PLGA dissolution is influenced by numerous factors (features), and counting the known features leads to a dataset with 300 features. This large number of features and high redundancy within the dataset makes the prediction task very difficult and inaccurate. In this study, dimensionality reduction techniques were applied in order to simplify the task and eliminate irrelevant and redundant features. A heterogeneous pool of several regression algorithms were independently tested and evaluated. In addition, several ensemble methods were tested in order to improve the accuracy of prediction. The empirical results revealed that the proposed evolutionary weighted ensemble method offered the lowest margin of error and significantly outperformed the individual algorithms and the other ensemble techniques.
BACKGROUND: Suitable fluorophores are the core of fluorescence imaging. Among the most exciting, yet controversial, labels are quantum dots (QDs) with their unique optical and chemical properties, but also considerable toxicity. This hinders QDs applicability in living systems. Surface chemistry has a profound impact on biological behavior of QDs. This study describes a two-step synthesis of QDs formed by CdTe core doped with Schiff base ligand for lanthanides [Ln (Yb3+, Tb3+ and Gd3+)] as novel cytocompatible fluorophores. RESULTS: Microwave-assisted synthesis resulted in water-soluble nanocrystals with high colloidal and fluorescence stability with quantum yields of 40.9-58.0%. Despite induction of endocytosis and cytoplasm accumulation of Yb- and TbQDs, surface doping resulted in significant enhancement in cytocompatibility when compared to the un-doped CdTe QDs. Furthermore, only negligible antimigratory properties without triggering formation of reactive oxygen species were found, particularly for TbQDs. Ln-doped QDs did not cause observable hemolysis, adsorbed only a low degree of plasma proteins onto their surface and did not possess significant genotoxicity. To validate the applicability of Ln-doped QDs for in vitro visualization of receptor status of living cells, we performed a site-directed conjugation of antibodies towards immuno-labeling of clinically relevant target-human norepinephrine transporter (hNET), over-expressed in neuroendocrine tumors like neuroblastoma. Immuno-performance of modified TbQDs was successfully tested in distinct types of cells varying in hNET expression and also in neuroblastoma cells with hNET expression up-regulated by vorinostat. CONCLUSION: For the first time we show that Ln-doping of CdTe QDs can significantly alleviate their cytotoxic effects. The obtained results imply great potential of Ln-doped QDs as cytocompatible and stable fluorophores for various bio-labeling applications.
- MeSH
- Single-Cell Analysis methods MeSH
- Fluorescent Dyes toxicity MeSH
- Quantum Dots toxicity MeSH
- Lanthanoid Series Elements chemistry MeSH
- Humans MeSH
- Microwaves MeSH
- Cell Line, Tumor MeSH
- Optical Imaging methods MeSH
- Surface Properties MeSH
- Schiff Bases chemistry MeSH
- Cadmium Compounds toxicity MeSH
- Tellurium toxicity MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH