multipotency Dotaz Zobrazit nápovědu
NG2 cells represent one of the most proliferative glial cell populations in the intact mammalian central nervous system (CNS). They are well-known for their ability to renew themselves or to generate new oligodendrocytes during development as well as in adulthood, therefore also being termed oligodendrocyte progenitor cells. Following CNS injuries, such as demyelination, trauma or ischemia, the proliferative capacity of NG2 cells rapidly increases and moreover, their differentiation potential broadens, as documented by numerous reports also describing their differentiation into astrocytes or even neurons. Here, we summarize the current knowledge about NG2 cells proliferation, their fate plasticity during embryogenesis as well as in postnatal CNS under physiological and pathological conditions, with the main emphasis on the role of various signaling molecules, growth factors, hormones or even neurotransmitters on the fate potential of NG2 cells.
- MeSH
- antigeny metabolismus MeSH
- kmenové buňky účinky léků fyziologie MeSH
- látky ovlivňující centrální nervový systém farmakologie terapeutické užití MeSH
- lidé MeSH
- mezibuněčné signální peptidy a proteiny metabolismus MeSH
- multipotentní kmenové buňky účinky léků fyziologie transplantace MeSH
- neurogeneze účinky léků fyziologie MeSH
- neuroglie účinky léků fyziologie MeSH
- neuroplasticita účinky léků fyziologie MeSH
- oligodendroglie účinky léků fyziologie MeSH
- proliferace buněk účinky léků fyziologie MeSH
- proteoglykany metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.
BACKGROUND: A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. METHODS: Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. RESULTS: In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2-6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. CONCLUSIONS: These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.
The efficiency of clinical trials involving transplantation of multipotent mesenchymal stromal cells (MSCs) is often insufficient due to harsh conditions present within the target tissue including hypoxia, low nutrient supply as well as inflammatory reactions. This indicates the necessity for optimization of cell-based therapy approaches which might include either modification of the cell manufacturing process or specific cell pretreatment procedures prior to transplantation. Recent reports confirm evidence that the aggregation of MSCs into three-dimensional (3D) multicellular spheroids results in enhancement of the overall therapeutic potential of cells, by improving the anti-inflammatory and angiogenic properties, stemness and survival of MSCs after transplantation. Such an MSCs spheroid generation approach may open new opportunities for the enlargement of MSCs applications in clinical research and therapy. However, the unification and optimization of 3D spheroid generation techniques, including the selection of appropriate clinical-grade culture conditions and methods for their large-scale production, are still of great importance. The current review addresses questions regarding therapeutic-associated properties of 3D multicellular MSCs spheroids in vitro and during preclinical animal studies, with special attention to the possibilities of translating these research achievements toward further clinical manufacturing and applications.
- MeSH
- buněčné kultury MeSH
- buněčné sféroidy cytologie metabolismus transplantace MeSH
- cytokiny metabolismus MeSH
- kardiovaskulární nemoci patologie terapie MeSH
- lidé MeSH
- mezibuněčné signální peptidy a proteiny metabolismus MeSH
- multipotentní kmenové buňky cytologie metabolismus MeSH
- viabilita buněk MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Multipotent mesenchymal stromal cells (MSCs) are primitive cells capable of restoring damaged mesenchyme and with the ability to differentiate into mature cells of bone, cartilage, muscle, fat, nerve or fibrous tissues. MSCs are therefore good candidates for applications in regenerative medicine and cell based therapy. They regenerate through self-renewal, differentiational capacity, immune modulation and secretion of bioactive molecules. Authors present a review of MSCs applications in otorhinolaryngology. The major interest is focused on phonosurgery, sensorineural deafness and reconstruction of large tissue defects with bone, cartilage or soft tissue replacement. Current evidence of MSCs treatment efficacy in otorhinolaryngology is based on animal models. The true impact on clinical treatment will not be known until clinical studies prove functional outcomes in human medicine.
- MeSH
- biologické modely * MeSH
- buněčná diferenciace fyziologie MeSH
- chrupavka cytologie fyziologie MeSH
- kosti a kostní tkáň cytologie fyziologie MeSH
- lidé MeSH
- mezenchymální kmenové buňky fyziologie MeSH
- nervová tkáň cytologie fyziologie MeSH
- otorinolaryngologie metody MeSH
- regenerativní lékařství metody MeSH
- řízená tkáňová regenerace metody MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Využívání multipotentních mezenchymových stromálních buněk v rekonstrukční chirurgii má dlouhou historii. V současnosti se tyto buňky začínají využívat pro účely buněčné terapie dospělými kmenovými buňkami a tkáňového inženýrství. Výzkum dospěl i v ortopedii do preklinické fáze a vstupuje do klinických studií. Pro zajištění maximální bezpečnosti pro pacienta se použití těchto nových postupů musí řídit přísnými pravidly, která ještě nejsou celosvětově jednotná. Proto do doby, než budou v klinické praxi potvrzeny vědecké předpoklady, zůstane zlatým standardem pro zlepšení hojení kosti autologní štěp.
The application of multipotent mesenchymal stromal cells in reconstructive surgery has a long history. Currently these cells are used for purposes of somatic stem cell therapy and tissue engineering. Orthopedic basal research had also reached preclinical stage and entered clinical studies. For a patient safety assurance these new applications are strictly regulated but these regulations have not yet been harmonized worldwide. That is why autogenic bone graft stays a gold standard in bone regeneration until the experimental assumptions would be proven in clinical practice.
- Klíčová slova
- Fraxiparine,
- MeSH
- autologní transplantace metody trendy využití MeSH
- buněčné kultury metody normy využití MeSH
- lidé MeSH
- multipotentní kmenové buňky imunologie transplantace MeSH
- ortopedie metody normy trendy MeSH
- regenerace kostí fyziologie imunologie MeSH
- tkáňové inženýrství metody trendy využití MeSH
- transplantace mezenchymálních kmenových buněk metody trendy využití MeSH
- transplantáty normy trendy využití MeSH
- zákroky plastické chirurgie metody trendy využití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- směrnice pro lékařskou praxi MeSH
Canal wall down mastoidectomy is one of the most effective treatments for cholesteatoma. However, it results in anatomical changes in the external and middle ear with a negative impact on the patient's quality of life. To provide complete closure of the mastoid cavity and normalize the anatomy of the middle and external ear, we used human multipotent mesenchymal stromal cells (hMSCs), GMP grade, in a guinea pig model. A method for preparing a biomaterial composed of hMSCs, hydroxyapatite, and tissue glue was developed. Animals from the treated group were implanted with biomaterial composed of hydroxyapatite and hMSCs, while animals in the control group received hydroxyapatite alone. When compared to controls, the group implanted with hMSCs showed a significantly higher ratio of new bone formation (p = 0.00174), as well as a significantly higher volume percentage of new immature bone (p = 0.00166). Our results proved a beneficial effect of hMSCs on temporal bone formation and provided a promising tool to improve the quality of life of patients after canal wall down mastoidectomy by hMSC implantation.
- MeSH
- biologické markery metabolismus MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie MeSH
- modely nemocí na zvířatech MeSH
- morčata MeSH
- multipotentní kmenové buňky cytologie MeSH
- počítačová rentgenová tomografie MeSH
- pooperační péče * MeSH
- spánková kost diagnostické zobrazování patologie chirurgie MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- vnitřní ucho patologie MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- morčata MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Clinical application of human multipotent mesenchymal stromal cells (hMSCs) requires their expansion to be safe and rapid. We aimed to develop an expansion protocol which would avoid xenogeneic proteins, including fetal calf serum (FCS), and which would shorten the cultivation time and avoid multiple passaging. First, we have compared research-grade alpha-MEM medium with clinical grade CellGro for Hematopoietic Cells' Medium. When FCS was used for supplementation and non-adherent cells were discarded, both media were comparable. Both media were comparable also when pooled human serum (hS) was used instead of FCS, but the numbers of hMSCs were lower when non-adherent cells were discarded. However, significantly more hMSCs were obtained both in alpha-MEM and in CellGro supplemented with hS when the non-adherent cells were left in the culture. Furthermore, addition of recombinant cytokines and other supplements (EGF, PDGF-BB, M-CSF, FGF-2, dexamethasone, insulin and ascorbic acid) to the CellGro co-culture system with hS led to 40-fold increase of hMSCs' yield after two weeks of cultivation compared to alpha-MEM with FCS. The hMSCs expanded in the described co-culture system retain their osteogenic, adipogenic and chondrogenic differentiation potential in vitro and produce bone-like mineralized tissue when propagated on 3D polylactide scaffolds in immunodeficient mice. Our protocol thus allows for very effective one-step, xenogeneic protein-free expansion of hMSCs, which can be easily transferred into good manufacturing practice (GMP) conditions for large-scale, clinical-grade production of hMSCs for purposes of tissue engineering.
- MeSH
- buněčná diferenciace fyziologie MeSH
- buněčné kultury MeSH
- buňky stromatu cytologie fyziologie MeSH
- cytokiny metabolismus MeSH
- dospělí MeSH
- kosti a kostní tkáň fyziologie MeSH
- kultivační média chemie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie fyziologie MeSH
- mezibuněčné signální peptidy a proteiny metabolismus MeSH
- mladý dospělý MeSH
- multipotentní kmenové buňky cytologie fyziologie MeSH
- myši inbrední NOD MeSH
- myši MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- tkáňové inženýrství metody MeSH
- transplantace mezenchymálních kmenových buněk MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- hodnotící studie MeSH
- práce podpořená grantem MeSH
BACKGROUND INFORMATION: Multipotent mesenchymal stem cells can participate in the formation of a microenvironment stimulating the aggressive behaviour of cancer cells. Moreover, cells exhibiting pluripotent ESC (embryonic stem cell) markers (Nanog and Oct4) have been observed in many tumours. Here, we investigate the role of cancer-associated fibroblasts in the formation of stem cell supporting properties of tumour stroma. We test the influence of fibroblasts isolated from basal cell carcinoma on mouse 3T3 fibroblasts, focusing on the expression of stem cell markers and plasticity in vitro by means of microarrays, qRT-PCR (quantitative real-time PCR) and immunohistochemistry. RESULTS: We demonstrate the biological activity of the cancer stromal fibroblasts by influencing the 3T3 fibroblasts to express markers such as Oct4, Nanog and Sox2 and to show differentiation potential similar to mesenchymal stem cells. The role of growth factors such as IGF2 (insulin-like growth factor 2), FGF7 (fibroblast growth factor 7), LEP (leptin), NGF (nerve growth factor) and TGFβ (transforming growth factor β), produced by the stromal fibroblasts, is established to participate in their bioactivity. Uninduced 3T3 do not express the stem cell markers and show minimal differentiation potential. CONCLUSIONS: Our observations indicate the pro-stem cell activity of cancer-associated fibroblasts and underline the role of epithelial-mesenchymal interaction in tumour biology.
- MeSH
- bazocelulární karcinom patologie MeSH
- buněčná diferenciace MeSH
- buňky 3T3 MeSH
- buňky stromatu metabolismus patologie MeSH
- epitelo-mezenchymální tranzice MeSH
- fenotyp MeSH
- fibroblasty metabolismus patologie MeSH
- imunohistochemie MeSH
- keratinocyty cytologie MeSH
- kokultivační techniky MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky metabolismus patologie MeSH
- multipotentní kmenové buňky metabolismus patologie MeSH
- myši MeSH
- nádorové biomarkery metabolismus MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- separace buněk MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The widespread use of multipotent mesenchymal stromal cell-derived secretome (MSC-sec) requires optimal preservation methods. Lyophilization offers benefits like concentrating the secretome, reducing the storage volume, and making storage conditions more flexible. This study evaluated the influence of storage duration and temperature on lyophilized MSC-sec. The conditioned medium from Wharton's jelly MSCs was stored at - 80 °C or lyophilized with or without trehalose. Lyophilized formulations were kept at - 80 °C, - 20 °C, 4 °C, or room temperature (RT) for 3 and 30 months. After storage and reconstitution, the levels of growth factors and cytokines were assessed using multiplex assay. The storage of lyophilized MSC-sec at - 80 °C ensured biomolecule preservation for 3 and 30 months. Following 3 month storage at 4 °C and RT, a notable decrease occurred in BDNF, bNGF, and sVCAM-1 levels. Prolonged 30 month storage at the same temperatures significantly reduced BDNF, bNGF, VEGF-A, IL-6, and sVCAM-1, while storage at - 20 °C decreased BDNF, bNGF, and VEGF- A levels. Trehalose supplementation of MSC-sec improved the outcome during storage at 4 °C and RT. Proper storage conditions were crucial for the preservation of lyophilized MSC-sec composition. Short-term storage at various temperatures maintained over 60% of the studied growth factors and cytokines; long-term preservation was only adequate at -80 °C.
- MeSH
- cytokiny metabolismus MeSH
- kryoprezervace metody MeSH
- kultivační média speciální chemie MeSH
- kultivované buňky MeSH
- lidé MeSH
- lyofilizace * MeSH
- mezenchymální kmenové buňky * metabolismus cytologie MeSH
- sekretom metabolismus MeSH
- teplota MeSH
- trehalosa metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH