protein dissolution
Dotaz
Zobrazit nápovědu
Polysaccharides like hyaluronan (HA) and chondroitin sulfate (CS) are native of the brain's extracellular matrix crucial for myelination and brain maturation. Despite extensive research on HA and CS as drug delivery systems (DDS), their high water solubility limits their application as drug carriers. This study introduces an injectable DDS using aldehyde-modified hyaluronic acid (HAOX) hydrogel containing polyelectrolyte complexes (PEC) formed with calcium, gelatin, and either CS or aldehyde-modified CS (CSOX) to deliver minocycline for Multiple Sclerosis therapy. PECs with CSOX enable covalent crosslinking to HAOX, creating immobilized PECs (HAOX_PECOX), while those with CS remain unbound (HAOX_PECS). The in situ forming DDS can be administered via a 20 G needle, with rapid gelation preventing premature leakage. The system integrates into an implanted device for minocycline release through either Fickian or anomalous diffusion, depending on PEC immobilization. HAOX_PECOX reduced burst release by 88 %, with a duration of 127 h for 50 % release. The DDS exhibited an elastic modulus of 3800 Pa and a low swelling ratio (0-1 %), enabling precise control of minocycline release kinetics. Released minocycline reduced IL-6 secretion in the Whole Blood Monocytes Activation Test, suggesting that DDS formation may not alter the biological activity of the loaded drug.
- MeSH
- aldehydy chemie MeSH
- chondroitinsulfáty * chemie MeSH
- hydrogely * chemie farmakologie MeSH
- interleukin-6 metabolismus MeSH
- kyselina hyaluronová * chemie MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- minocyklin * chemie farmakologie aplikace a dávkování MeSH
- nosiče léků * chemie MeSH
- polyelektrolyty * chemie MeSH
- uvolňování léčiv MeSH
- želatina * chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
During coagulation, the soluble fibrinogen is converted into insoluble fibrin. Fibrinogen is a multifunctional plasma protein, which is essential for hemostasis. Various oxidative posttranslational modifications influence fibrinogen structure as well as interactions between various partners in the coagulation process. The aim was to examine the effects of oxidative stress conditions on fibrin clot formation in arterial atherothrombotic disorders. We studied the changes in in vitro fibrin network formation in three groups of patients-with acute coronary syndrome (ACS), with significant carotid artery stenosis (SCAS), and with acute ischemic stroke (AIS), as well as a control group. The level of oxidative stress marker malondialdehyde measured by LC-MS/MS was higher in SCAS and AIS patients compared with controls. Turbidic methods revealed a higher final optical density and a prolonged lysis time in the clots of these patients. Electron microscopy was used to visualize changes in the in vitro-formed fibrin network. Fibers from patients with AIS were significantly thicker in comparison with control and ACS fibers. The number of fibrin fibers in patients with AIS was significantly lower in comparison with ACS and control groups. Thus, oxidative stress-mediated changes in fibrin clot formation, structure and dissolution may affect the effectiveness of thrombolytic therapy.
- Publikační typ
- časopisecké články MeSH
L-amino acids (L-AAs) play different important roles in the physiology of all living organisms. Their chiral counterparts, D-amino acids (D-AAs) are increasingly being recognized as essential molecules in many biological systems. Secondary amino acids with cyclic structures, such as prolines, exhibit conformational rigidity and thus unique properties in the structural and protein folding. Despite their widespread occurrence, much less attention was paid to their chiral analysis, particularly when the minor, typically D-enantiomer, is present in low amounts in a complex biological matrix. In this paper, a cost-effective, chiral GC-MS method is described for capillary Chirasil-L-Val separation of nine cyclic secondary amino acid enantiomers with four-, five-, and six-membered rings, involving azetidine-2-carboxylic acid, pipecolic acid, nipecotic acid, proline, isomeric cis/trans 3-hydroxy, 4-hydroxyproline, and cis/trans-5-hydroxy-L-pipecolic acid in the excess of its enantiomeric antipode. The sample preparation involves in-situ derivatization with heptafluorobutyl chloroformate, simultaneous liquid-liquid micro-extraction into isooctane followed by amidation of the arising low-polar derivatives with methylamine, an evaporation step, re-dissolution, and final GC-MS analysis. The developed method was used for analyses of human biofluids, biologically active peptides containing chiral proline constituents, and collagen.
- MeSH
- fluorokarbony chemie MeSH
- formiáty chemie MeSH
- iminokyseliny analýza chemie MeSH
- kalibrace MeSH
- lidé MeSH
- methylaminy chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody normy MeSH
- reprodukovatelnost výsledků MeSH
- stereoizomerie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Hydroxypropylmethylcellulose (HPMC), also known as Hypromellose, is a traditional pharmaceutical excipient widely exploited in oral sustained drug release matrix systems. The choice of numerous viscosity grades and molecular weights available from different manufacturers provides a great variability in its physical-chemical properties and is a basis for its broad successful application in pharmaceutical research, development, and manufacturing. The excellent mucoadhesive properties of HPMC predetermine its use in oromucosal delivery systems including mucoadhesive tablets and films. HPMC also possesses desirable properties for formulating amorphous solid dispersions increasing the oral bioavailability of poorly soluble drugs. Printability and electrospinnability of HPMC are promising features for its application in 3D printed drug products and nanofiber-based drug delivery systems. Nanoparticle-based formulations are extensively explored as antigen and protein carriers for the formulation of oral vaccines, and oral delivery of biologicals including insulin, respectively. HPMC, being a traditional pharmaceutical excipient, has an irreplaceable role in the development of new pharmaceutical technologies, and new drug products leading to continuous manufacturing processes, and personalized medicine. This review firstly provides information on the physical-chemical properties of HPMC and a comprehensive overview of its application in traditional oral drug formulations. Secondly, this review focuses on the application of HPMC in modern pharmaceutical technologies including spray drying, hot-melt extrusion, 3D printing, nanoprecipitation and electrospinning leading to the formulation of printlets, nanoparticle-, microparticle-, and nanofiber-based delivery systems for oral and oromucosal application. Hypromellose is an excellent excipient for formulation of classical dosage forms and advanced drug delivery systems. New methods of hypromellose processing include spray draying, hot-melt extrusion, 3D printing, and electrospinning.
Signal enhancements of up to two orders of magnitude in protein NMR can be achieved by employing HDO as a vector to introduce hyperpolarization into folded or intrinsically disordered proteins. In this approach, hyperpolarized HDO produced by dissolution-dynamic nuclear polarization (D-DNP) is mixed with a protein solution waiting in a high-field NMR spectrometer, whereupon amide proton exchange and nuclear Overhauser effects (NOE) transfer hyperpolarization to the protein and enable acquisition of a signal-enhanced high-resolution spectrum. To date, the use of this strategy has been limited to 1D and 1H-15N 2D correlation experiments. Here we introduce 2D 13C-detected D-DNP, to reduce exchange-induced broadening and other relaxation penalties that can adversely affect proton-detected D-DNP experiments. We also introduce hyperpolarized 3D spectroscopy, opening the possibility of D-DNP studies of larger proteins and IDPs, where assignment and residue-specific investigation may be impeded by spectral crowding. The signal enhancements obtained depend in particular on the rates of chemical and magnetic exchange of the observed residues, thus resulting in non-uniform 'hyperpolarization-selective' signal enhancements. The resulting spectral sparsity, however, makes it possible to resolve and monitor individual amino acids in IDPs of over 200 residues at acquisition times of just over a minute. We apply the proposed experiments to two model systems: the compactly folded protein ubiquitin, and the intrinsically disordered protein (IDP) osteopontin (OPN).
- MeSH
- lidé MeSH
- nukleární magnetická rezonance biomolekulární * MeSH
- osteopontin chemie MeSH
- ubikvitin chemie MeSH
- vnitřně neuspořádané proteiny chemie MeSH
- voda chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Background: Iron oxide nanoparticles (IONs) have been increasingly utilized in a wide spectrum of biomedical applications. Surface coatings of IONs can bestow a number of exceptional properties, including enhanced stability of IONs, increased loading of drugs or their controlled release. Methods: Using two-step sonochemical protocol, IONs were surface-coated with polyoxyethylene stearate, polyvinylpyrrolidone or chitosan for a loading of two distinct topo II poisons (doxorubicin and ellipticine). The cytotoxic behavior was tested in vitro against breast cancer (MDA-MB-231) and healthy epithelial cells (HEK-293 and HBL-100). In addition, biocompatibility studies (hemotoxicity, protein corona formation, binding of third complement component) were performed. Results: Notably, despite surface-coated IONs exhibited only negligible cytotoxicity, upon tethering with topo II poisons, synergistic or additional enhancement of cytotoxicity was found in MDA-MB-231 cells. Pronounced anti-migratory activity, DNA fragmentation, decrease in expression of procaspase-3 and enhancement of p53 expression were further identified upon exposure to surface-coated IONs with tethered doxorubicin and ellipticine. Moreover, surface-coated IONs nanoformulations of topo II poisons exhibited exceptional stability in human plasma with no protein corona and complement 3 binding, and only a mild induction of hemolysis in human red blood cells. Conclusion: The results imply a high potential of an efficient ultrasound-mediated surface functionalization of IONs as delivery vehicles to improve therapeutic efficiency of topo II poisons.
- MeSH
- biokompatibilní potahované materiály chemie MeSH
- buněčná smrt účinky léků MeSH
- buněčné linie MeSH
- DNA-topoisomerasy typu II metabolismus MeSH
- doxorubicin farmakologie MeSH
- hojení ran účinky léků MeSH
- inhibitory topoisomerasy II farmakologie MeSH
- kinetika MeSH
- lidé MeSH
- nanočástice chemie MeSH
- pohyb buněk účinky léků MeSH
- povrchové vlastnosti MeSH
- statická elektřina MeSH
- uvolňování léčiv * MeSH
- vibrace ultrazvukové metody MeSH
- železité sloučeniny chemie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Current scenario of bio-nanotechnology, successfully fabrication of ultrafine titanium dioxide nanoparticles (TiO2NPs) using various biological protein sources for the multipurpose targets. The present research report involves synthesis of TiO2NPs using antimicrobial peptide (AMP) crustin (Cr). Crustin previously purified from the blue crab, Portunus pelagicus haemolymph, by blue Sepharose CL-6B matrix assisted affinity column chromatography. Synthesized Cr-TiO2NPs was physico-chemically characterized by UV-Visible spectroscopy (UV-Visible), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High-resolution transmission electron microscopy (HR-TEM) and zeta potential examination. X-ray diffraction analysis for crystalline nature and phase identification of titanium dioxide nanoparticles was absorbed. Functional groups were found through FTIR ranges between 1620 and 1700 cm-1. HR-TEM analysis showed that the synthesized Cr-TiO2NPs tetragonal shape and sizes ranging from 10 to 50 nm. Finally, the surface charge of the Cr-TiO2NPs was confirmed through zeta potential analysis. Furthermore, the characterized Cr-TiO2NPs exhibited good biofilm inhibition against GPB - S. mutans (Gram Positive Bacteria- Streptococcus mutans), GNB - P. vulgaris (Gram Negative Bacteria- Proteus vulgaris) and fungal Candida albicans. Moreover, photocatalysis demonstrated that the Cr-TiO2NPs was effectively explored the degradation of dyes. The results suggest that Cr-TiO2NPs is an excellent bactericidal, fungicidal and photocatalytic agent that can be supportively used for biomedical and industrial applications.
- MeSH
- antiinfekční látky chemie farmakologie MeSH
- biofilmy MeSH
- Candida albicans účinky léků MeSH
- Culicidae MeSH
- fotochemické procesy * MeSH
- insekticidy chemie farmakologie MeSH
- katalýza MeSH
- kationické antimikrobiální peptidy chemie farmakologie MeSH
- krabi chemie MeSH
- larva účinky léků MeSH
- lidé MeSH
- molekulární struktura MeSH
- nanokapsle chemie MeSH
- Proteus vulgaris účinky léků MeSH
- Streptococcus mutans účinky léků MeSH
- světlo MeSH
- titan chemie MeSH
- uvolňování léčiv MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
To employ dual advantages of emulsion and gel, a facile approach was investigated to fabricate core/shells structured hydrogel beads based on sodium alginate (SA) via Pickering emulsion template and in situ gelation. The encapsulation and controlled release behavior were further studied using lysozyme (Ly) as the model protein. The optical micrographs and SEM images indicated the SA beads could well disperse with the size about 150 μm. CaCO3 microparticles were strong adhesive onto SA gel. It showed that 96.51 ± 0.62% Ly was loaded into the hydrogel beads. The released behavior of Ly could be regulated by external pH condition, and displayed highest release rate at pH 5.0. Whereas the lowest release rate was recorded at pH 7.0. The released behavior well followed the Hixcon-Crowell model which indicated that the release mechanism of Ly followed the corrosion diffusion law. The worth-while endeavor provide an artful and facile approach using Pickering emulsion template and in situ gelation to fabricate core/shells structured SA beads with high load capacity and controlled regulation of the entrapped functional component.
- MeSH
- algináty chemie MeSH
- difuze MeSH
- emulze MeSH
- hydrogely chemie MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- léky s prodlouženým účinkem * MeSH
- muramidasa chemie MeSH
- příprava léků metody MeSH
- roztoky MeSH
- uhličitan vápenatý chemie MeSH
- uvolňování léčiv MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
Oyster mushrooms are an interesting source of biologically active glucans and other polysaccharides. This work is devoted to the isolation and structural characterization of polysaccharides from basidiocarps of the cultivated oyster mushroom, Pleurotus ostreatus. Five polysaccharidic fractions were obtained by subsequent extraction with cold water, hot water and two subsequent extractions with 1 m sodium hydroxide. Branched partially methoxylated mannogalactan and slightly branched (1→6)-β-d-glucan predominated in cold- and hot-water-soluble fractions, respectively. Alternatively, these polysaccharides were obtained by only hot water extraction and subsequent two-stage chromatographic separation. The alkali-soluble parts originating from the first alkali extraction were then fractionated by dissolution in dimethyl sulfoxide (DMSO). The polysaccharide insoluble in DMSO was identified as linear (1→3)-α-d-glucan, while branched (1→3)(1→6)-β-d-glucans were found to be soluble in DMSO. The second alkaline extract contained the mentioned branched β-d-glucan together with some proteins. Finally, the alkali insoluble part was a cell wall complex of chitin and β-d-glucans.
- MeSH
- chemická frakcionace MeSH
- chromatografie MeSH
- fungální polysacharidy chemie izolace a purifikace MeSH
- fytonutrienty chemie izolace a purifikace MeSH
- glukany chemie MeSH
- molekulární struktura MeSH
- monosacharidy chemie MeSH
- Pleurotus chemie MeSH
- plodnice hub chemie MeSH
- spektrální analýza MeSH
- Publikační typ
- časopisecké články MeSH
We have developed a tumor environment-responsive polymeric anticancer prodrug containing pirarubicin (THP) conjugated to N-(2-hydroxypropyl) methacrylamide copolymer (PHPMA), [P-THP], through a spacer containing pH-sensitive hydrazone bond, that showed remarkable therapeutic effect against various tumor models and in a human pilot study. Toward clinical development, here we report THP release profile from its HPMA copolymer conjugate, the conjugate stability, protein and cell-binding and solubility of P-THP. Size exclusion chromatography of P-THP (molecular weight 38 kDa) showed similar hydrodynamic volume as bovine serum albumin (BSA) in aqueous solution, with no apparent interactions with BSA, nor aggregation by itself. pH-responsive release of free THP was reconfirmed at pHs 6.5 and lower. The drug release was significantly affected by a type of used buffer. Phosphate buffer seems to facilitate faster hydrazone bond cleavage at pH 7.4 whereas higher stability was achieved in L-arginine solution which yielded only little cleavage and THP release, approx. 15% within 2 weeks at the same pH at 25 °C. Furthermore, ex vivo study using sera of different animal species showed very high stability of P-THP. Incubation with blood showed high stability of P-THP during circulation, without binding to blood cells. These findings revealed that L-arginine solution provides appropriate media for formulation of P-THP infusion solution as tumor-targeted polymeric anticancer drug based on EPR effect.
- MeSH
- arginin chemie MeSH
- doxorubicin analogy a deriváty chemie MeSH
- králíci MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- methakryláty chemie MeSH
- myši MeSH
- nosiče léků chemie MeSH
- pilotní projekty MeSH
- polymery chemie MeSH
- protinádorové látky chemie MeSH
- rozpustnost účinky léků MeSH
- sérový albumin hovězí chemie MeSH
- uvolňování léčiv účinky léků MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH