scaffolds for tissue engineering
Dotaz
Zobrazit nápovědu
Tissue engineering (TE) and regenerative medicine are progressively developed areas due to many novel tissue replacements and implementation strategies. Increasing knowledge involving the fabrication of biomaterials with advanced physicochemical and biological characteristics, successful isolation and preparation of stem cells, incorporation of growth and differentiation factors, and biomimetic environments gives us a unique opportunity to develop various types of scaffolds for TE. The current strategies for soft tissue reconstitution or regeneration highlight the importance of novel regenerative therapies in cases of significant soft tissue loss and in cases of congenital defects, disease, trauma and ageing. Various types of biomaterials and scaffolds have been tested for soft tissue regeneration. The synthetic types of materials have gained great attention due to high versatility, tunability and easy functionalization for better biocompatibility. This article reviews the current materials that are usually the most used for the fabrication of scaffolds for soft TE; in addition, the types of scaffolds together with examples of their applications for the regenerative purposes of soft tissue, as well as their major physicochemical characteristics regarding the increased applicability of these materials in medicine, are reviewed.
- MeSH
- biokompatibilní materiály aplikace a dávkování metabolismus MeSH
- lidé MeSH
- polymery aplikace a dávkování metabolismus MeSH
- poranění měkkých tkání farmakoterapie metabolismus MeSH
- stárnutí účinky léků fyziologie MeSH
- tkáňové inženýrství metody trendy MeSH
- tkáňové podpůrné struktury * trendy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Repopulace decelularizované tkáně buňkami je velmi nadějným směrem, kterým by se mohl řešit nedostatek tkání a orgánů pro transplantace, přičemž jaterní tkáňové inženýrství není výjimkou. Decelularizovaný jaterní skelet slouží jako ideální 3D prostředí pro recelularizaci, neboť je v něm zachována tkáňově specifická mikroarchitektura proteinů extracelulární matrix (ECM) s poziční informací jak pro osídlení novými buňkami, tak pro jejich migraci, růst a diferenciaci. Při použití autologních buněk by navíc nově konstruovaný štěp měl postrádat imunogenicitu v hostitelském organismu, bylo by tedy možné se kompletně vyhnout imunosupresi, která je v současnosti nutnou součástí terapie po transplantaci. Tento přehled uvádí příklady dosud provedených decelularizačních a repopulačních experimentů v játrech, přičemž upozorňuje na pokroky a poukazuje na výzvy, které je třeba řešit.
Repopulation of decellularized tissue with cells is a very promising approach in tissue engineering, with liver tissue engineering not being an exception. Decellularized liver scaffolds can serve as an excellent 3D environment for recellularization as it maintain tissue-specific microarchitecture of ECM proteins with important spatial cues for cell adhesion, migration, growth and differentiation. Moreover, by using autologous cells the newly constructed graft should lack immunogenicity in the host organism and thus eliminate the need for immunosuppressive therapy in the post-transplant period. This review provides an overview of liver decellularization and repopulation experiments done so far while highlighting the advances as well as pin-pointing the challenges that remain to be solved.
- Klíčová slova
- decelularizace jater, depopulace jater,
- MeSH
- játra chemie MeSH
- lidé MeSH
- modely u zvířat MeSH
- prasata MeSH
- regenerativní lékařství metody MeSH
- tkáňové inženýrství * MeSH
- tkáňové podpůrné struktury MeSH
- transplantace jater MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Seriously compromised function of some organs can only be restored by transplantation. Due to the shortage of human donors, the need to find another source of organs is of primary importance. Decellularized scaffolds of non-human origin are being studied as highly potential biomaterials for tissue engineering. Their biological nature and thus the ability to provide a naturally-derived environment for human cells to adhere and grow highlights their great advantage in comparison to synthetic scaffolds. Nevertheless, since every biomaterial implanted in the body generates immune reaction, studying the interaction of the scaffold with the surrounding tissues is necessary. This review aims to summarize current knowledge on the immunogenicity of semi-xenografts involved in transplantation. Moreover, positive aspects of the interaction between xenogeneic scaffold and human cells are discussed, focusing on specific roles of proteins associated with extracellular matrix in cell adhesion and signalling.
Poly(N,N-diethylacrylamide) (PDEAAm) hydrogel scaffolds were prepared by radical copolymerization of N,N-diethylacrylamide (DEAAm), N,N'-methylenebisacrylamide and methacrylic acid in the presence of (NH₄)₂SO₄ or NaCl. The hydrogels were characterized by low-vacuum scanning electron microscopy in the water-swollen state, water and cyclohexane regain, and by mercury porosimetry. The pentapeptide, YIGSR-NH₂, was immobilized on the hydrogel. Human embryonic stem cells (hESCs) were cultured with the hydrogels to test their biocompatibility. The results suggest that the PDEAAm hydrogel scaffolds are nontoxic and support hESC attachment and proliferation, and that interconnected pores of the scaffolds are important for hESC cultivation. Immobilization of YIGSR-NH₂ pentapeptide on the PDEAAm surface improved both adhesion and growth of hESCs compared with the unmodified hydrogel. The YIGSR-NH₂-modified PDEAAm hydrogels may be a useful tool for tissue-engineering purposes.
- MeSH
- akrylamidy chemie MeSH
- buněčné linie MeSH
- embryonální kmenové buňky cytologie MeSH
- hydrogely chemie MeSH
- lidé MeSH
- myši MeSH
- oligopeptidy chemie MeSH
- polymery chemie MeSH
- proliferace buněk MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Soft tissue regeneration with cell and tissue engineering-based approaches has numerous potential applications in plastic and reconstructive surgery. Adipose-derived stem cells (ASC) have been proved as a feasible source for adipose tissue engineering as they possess high proliferative and differentiation capacity. The purpose of our study was to evaluate adipogenic differentiation of human ASC in four different 3D scaffolds of natural origin, namely human platelet-poor plasma, alginate, fibrin gel and collagen sponge, to define their suitability for adipose tissue engineering and potential clinical applications. ASC were isolated from lipoaspirates of three adult female patients, seeded in the scaffolds, and adipogenic differentiation was induced. After two weeks of cultivation, the constructs were assessed for their mechanical and handling properties, cell viability and adipogenic differentiation. Additionally, the expression of vascular endothelial growth factor (VEGF) was analysed in different culture systems. The results indicate that the levels of specific adipogenic markers and VEGF expression were increased in 3D cultures, as compared to 2D culture. Among 3D scaffolds, fibrin gel showed optimal combination of mechanical characteristics and support of adipogenic differentiation; it was easy to handle, allowed high cell viability, and at the same time supported adipogenic differentiation and VEGF expression.
- MeSH
- buněčná diferenciace MeSH
- kmenové buňky cytologie metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury MeSH
- tuková tkáň cytologie růst a vývoj MeSH
- tukové buňky cytologie MeSH
- vaskulární endoteliální růstový faktor A metabolismus MeSH
- viabilita buněk MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
Polysaccharides meet several criteria for a suitable biomaterial for tissue engineering, which include biocompatibility and ability to support the delivery and growth of cells. Nevertheless, most of these polysaccharides, for example dextran, alginate, and glycosaminoglycans, are highly soluble in aqueous solutions. Hyaluronic acid hydrophobized by palmitic acid and processed to the form of wet-spun fibers and the warp-knitted textile scaffold is water non-soluble, but biodegradable material, which could be used for the tissue engineering purpose. However, its surface quality does not allow cell attachment. To enhance the biocompatibility the surface of palmitoyl-hyaluronan was roughened by freeze drying and treated by different cell adhesive proteins (fibronectin, fibrinogen, laminin, methacrylated gelatin and collagen IV). Except for collagen IV, these proteins covered the fibers uniformly for an extended period of time and supported the adhesion and cultivation of dermal fibroblasts and mesenchymal stem cells. Interestingly, adipose stem cells cultivated on the fibronectin-modified scaffold secreted increasing amount of HGF, SDF-1, and VEGF, three key growth factors involved in cardiac regeneration. These results suggested that palmitoyl-hyaluronan scaffold may be a promising material for various applications in tissue regeneration, including cardiac tissue repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1488-1499, 2018.
- MeSH
- biokompatibilní materiály chemie MeSH
- buněčná adheze MeSH
- buněčné linie MeSH
- fibronektiny chemie MeSH
- kmenové buňky cytologie MeSH
- kultivované buňky MeSH
- kyselina hyaluronová chemie MeSH
- kyselina palmitová chemie MeSH
- lidé MeSH
- povrchové vlastnosti MeSH
- proliferace buněk MeSH
- tkáňové inženýrství MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Thermally induced phase separation (TIPS) based methods are widely used for the fabrication of porous scaffolds for tissue engineering and related applications. However, formation of a less-/non-porous layer at the scaffold's outer surface at the air-liquid interface, often known as the skin-effect, restricts the cell infiltration inside the scaffold and therefore limits its efficacy. To this end, we demonstrate a TIPS-based process involving the exposure of the just quenched poly(lactide-co-caprolactone):dioxane phases to the pure dioxane for a short time while still being under the quenching strength, herein after termed as the second quenching (2Q). Scanning electron microscopy, mercury intrusion porosimetry and contact angle analysis revealed a direct correlation between the time of 2Q and the gradual disappearance of the skin, followed by the widening of the outer pores and the formation of the fibrous filaments over the surface, with no effect on the internal pore architecture and the overall porosity of scaffolds. The experiments at various quenching temperatures and polymer concentrations revealed the versatility of 2Q in removing the skin. In addition, the in vitro cell culture studies with the human primary fibroblasts showed that the scaffolds prepared by the TIPS based 2Q process, with the optimal exposure time, resulted in a higher cell seeding and viability in contrast to the scaffolds prepared by the regular TIPS. Thus, TIPS including the 2Q step is a facile, versatile and innovative approach to fabricate the polymer scaffolds with a skin-free and fully open porous surface morphology for achieving a better cell response in tissue engineering and related applications.
- MeSH
- analýza selhání vybavení MeSH
- biokompatibilní materiály chemická syntéza MeSH
- chemická frakcionace metody MeSH
- design vybavení MeSH
- polyestery chemie MeSH
- polymery chemie MeSH
- poréznost MeSH
- povrchové vlastnosti MeSH
- testování materiálů MeSH
- tkáňové inženýrství přístrojové vybavení metody MeSH
- tkáňové podpůrné struktury * MeSH
- vytápění metody MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Modifications of poly(2-hydroxyethyl methacrylate) (PHEMA) with cholesterol and laminin have been developed to design scaffolds that promote cell-surface interaction. Cholesterol-modified superporous PHEMA scaffolds have been prepared by the bulk radical copolymerization of 2-hydroxyethyl methacrylate (HEMA), cholesterol methacrylate (CHLMA) and the cross-linking agent ethylene dimethacrylate (EDMA) in the presence of ammonium oxalate crystals to introduce interconnected superpores in the matrix. With the aim of immobilizing laminin (LN), carboxyl groups were also introduced to the scaffold by the copolymerization of the above monomers with 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA). Subsequently, the MCMEMA moiety in the resulting hydrogel was hydrolyzed to [2-(methacryloyloxy)ethoxy]acetic acid (MOEAA), and laminin was immobilized via carbodiimide and N-hydroxysulfosuccinimide chemistry. The attachment, viability and morphology of mesenchymal stem cells (MSCs) were evaluated on both nonporous and superporous laminin-modified as well as laminin-unmodified PHEMA and poly(2-hydroxyethyl methacrylate-co-cholesterol methacrylate) P(HEMA-CHLMA) hydrogels. Neat PHEMA and laminin-modified PHEMA (LN-PHEMA) scaffolds facilitated MSC attachment, but did not support cell spreading and proliferation; the viability of the attached cells decreased with time of cultivation. In contrast, MSCs spread and proliferated on P(HEMA-CHLMA) and LN-P(HEMA-CHLMA) hydrogels.
- MeSH
- cholesterol metabolismus MeSH
- hydrogely chemie MeSH
- karbodiimidy chemie MeSH
- konfokální mikroskopie MeSH
- krysa rodu rattus MeSH
- methakryláty farmakologie chemie MeSH
- mezenchymální kmenové buňky cytologie účinky léků MeSH
- mikroskopie elektronová rastrovací MeSH
- počet buněk MeSH
- poréznost účinky léků MeSH
- roztoky MeSH
- spektrofotometrie ultrafialová MeSH
- tkáňové inženýrství MeSH
- tkáňové podpůrné struktury chemie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
Cílem tkáňového unženýrství je obnovit nebo nahradit tkáně a orgány poškozené onemocněním, zraněním nebo vrozenou anomálií. Prezentovaný přehled se zabývá buňkami a nosiči, který by napomohly tomuto cíli.
The goal of tissue engineering is to regenerate or replace tissues or organes damaged by illnesses, injuries or inherited disorderes. The presented review shows the suitable cells and polymeric carries sen/ing for this purpose.
In this study, fibrous scaffolds based on poly(γ-benzyl-l-glutamate) (PBLG) were investigated in terms of the chondrogenic differentiation potential of human tooth germ stem cells (HTGSCs). Through the solution-assisted bonding of the fibres, fully connected scaffolds with pore sizes in the range 20-400 µm were prepared. Biomimetic modification of the PBLG scaffolds was achieved by a two-step reaction procedure: first, aminolysis of the PBLG fibres' surface layers was performed, which resulted in an increase in the hydrophilicity of the fibrous scaffolds after the introduction of N5 -hydroxyethyl-l-glutamine units; and second, modification with the short peptide sequence azidopentanoyl-GGGRGDSGGGY-NH2 , using the 'click' reaction on the previously modified scaffold with 2-propynyl side-chains, was performed. Radio-assay of the 125 I-labelled peptide was used to evaluate the RGD density in the fibrous scaffolds (which varied in the range 10-3 -10 pm/cm2 ). All the PBLG scaffolds, especially with density 90 ± 20 fm/cm2 and 200 ± 100 fm/cm2 RGD, were found to be potentially suitable for growth and chondrogenic differentiation of HTGSCs. Copyright © 2015 John Wiley & Sons, Ltd.
- MeSH
- benzylové sloučeniny chemická syntéza chemie farmakologie MeSH
- chrupavka účinky léků fyziologie MeSH
- click chemie MeSH
- dítě MeSH
- glutamáty chemická syntéza chemie farmakologie MeSH
- glykosaminoglykany metabolismus MeSH
- kmenové buňky cytologie účinky léků MeSH
- kultivované buňky MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- mladiství MeSH
- peptidy farmakologie MeSH
- povrchové vlastnosti MeSH
- proliferace buněk účinky léků MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- viabilita buněk účinky léků MeSH
- zubní zárodek cytologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH